期刊文献+
共找到349篇文章
< 1 2 18 >
每页显示 20 50 100
改进的YOLO V3算法及其在小目标检测中的应用 被引量:156
1
作者 鞠默然 罗海波 +3 位作者 王仲博 何淼 常铮 惠斌 《光学学报》 EI CAS CSCD 北大核心 2019年第7期245-252,共8页
针对图像中小目标检测率低、虚警率高等问题,提出了一种YOLO V3的改进方法,并将其应用于小目标的检测。由于小目标所占的像素少、特征不明显,提出对原网络输出的8倍降采样特征图进行2倍上采样,将2倍上采样特征图与第2个残差块输出的特... 针对图像中小目标检测率低、虚警率高等问题,提出了一种YOLO V3的改进方法,并将其应用于小目标的检测。由于小目标所占的像素少、特征不明显,提出对原网络输出的8倍降采样特征图进行2倍上采样,将2倍上采样特征图与第2个残差块输出的特征图进行拼接,建立输出为4倍降采样的特征融合目标检测层。为了获取更多的小目标特征信息,在YOLO V3网络结构Darknet53的第2个残差块中增加2个残差单元。利用K-means聚类算法对目标候选框的个数和宽高比维度进行聚类分析。用改进的YOLO V3算法和原YOLO V3算法在VEDAI数据集上进行对比实验,结果表明改进后的YOLO V3算法能有效检测小目标,对小目标的召回率和检测的平均准确率均值都有明显的提升。 展开更多
关键词 机器视觉 小目标检测 YOLO V3 VEDAI数据集 K-MEANS聚类算法
原文传递
改进YOLOv3的金属表面缺陷检测研究 被引量:56
2
作者 程婧怡 段先华 朱伟 《计算机工程与应用》 CSCD 北大核心 2021年第19期252-258,共7页
针对金属表面缺陷检测中目标尺寸小和特征不清晰导致漏检的问题,提出一种改进YOLOv3的金属缺陷检测算法。在YOLOv3网络结构的基础上,将第11层浅层特征与网络深层特征融合,生成一个新的尺度为104×104特征图层,提取更多小缺陷目标特... 针对金属表面缺陷检测中目标尺寸小和特征不清晰导致漏检的问题,提出一种改进YOLOv3的金属缺陷检测算法。在YOLOv3网络结构的基础上,将第11层浅层特征与网络深层特征融合,生成一个新的尺度为104×104特征图层,提取更多小缺陷目标特征。加入DIoU边框回归损失,为边界框提供移动方向以及更准确的位置信息,加快模型收敛。利用K-Means++聚类分析数据集上的先验框尺寸信息,筛选出最优的AnchorBox,使定位更加精准,降低网络损失。将改进后的算法与其他检测算法在NEU-DET数据集上进行检测性能对比。实验分析表明改进后的YOLOv3平均检测速率为31.6 frame/s;平均检测精度为67.64%,比YOLOv3提高了7.49个百分点,相较于FasterR-CNN等算法也有较大的检测精度优势。结论表明,改进后的YOLOv3可以使小缺陷目标的位置信息和精度更加准确。 展开更多
关键词 目标检测 金属表面缺陷 YOLOv3 K-Means++ 距离交并比(DIoU)
下载PDF
基于深度学习的图像目标检测算法研究 被引量:48
3
作者 张培培 王昭 王菲 《国外电子测量技术》 2020年第8期34-39,共6页
目前,基于深度学习的目标检测和图像处理的应用范围非常广。在图像处理方面,加入了深度学习能够使一些算法即使在复杂的环境下也能有着不错的识别效果。基于深度学习的方法,通过增加神经网络的网络层数,能够有效的提取出待识别图像的相... 目前,基于深度学习的目标检测和图像处理的应用范围非常广。在图像处理方面,加入了深度学习能够使一些算法即使在复杂的环境下也能有着不错的识别效果。基于深度学习的方法,通过增加神经网络的网络层数,能够有效的提取出待识别图像的相关特征。其中,逐层设置由浅至深的网络层数就能够提高目标检测的效果。YOLOv3是一种快速的目标检测算法,但其对部分小目标的在检测,识别上不太准确。创新性的通过在基础模型上的改进和增加anchor数量的方法来实现算法的优化。通过实验令该算法在VOC 07数据集上进行验证,实验结果表明与传统未改进的YOLOv3模型相比,在精度上提高了约1.4倍。经过理论阐述和实验成果证明,所提出的方法确实具备更高的执行效果和可靠性,大大提升了模型在数据集上的平均准确率,说明此改进具有有效性和可行性。 展开更多
关键词 深度学习 图像处理 目标检测 YOLOv3
下载PDF
采用改进YoloV4模型检测复杂环境下马铃薯 被引量:34
4
作者 张兆国 张振东 +3 位作者 李加念 王海翼 李彦彬 李东昊 《农业工程学报》 EI CAS CSCD 北大核心 2021年第22期170-178,共9页
为解决马铃薯联合收获机在作业过程中分级清选的问题,并在收获作业过程中实时监测评估收获状态,该研究提出一种在光照亮度变化大、土壤与薯块遮挡、机器振动以及尘土干扰等情况下对马玲薯进行识别检测并快速准确获取马铃薯数量以及损伤... 为解决马铃薯联合收获机在作业过程中分级清选的问题,并在收获作业过程中实时监测评估收获状态,该研究提出一种在光照亮度变化大、土壤与薯块遮挡、机器振动以及尘土干扰等情况下对马玲薯进行识别检测并快速准确获取马铃薯数量以及损伤情况的机器学习模型。在卷积神经残差网络中引入轻量级注意力机制,改进YoloV4检测网络,并将YoloV4结构中的CSP-Darknet53网络替换为MobilenetV3网络,完成特征提取。试验结果表明,基于卷积神经网络的深度学习方法相比于传统Open-CV识别提高了马铃薯识别精度,相比于其他传统机器学习模型,MobilenetV3-YoloV4识别速度更快,马铃薯识别的全类平均准确率达到91.4%,在嵌入式设备上的传输速度为23.01帧/s,模型鲁棒性强,能够在各种环境下完成对正常马铃薯和机械损伤马铃薯的目标检测,可为马铃薯联合收获机智能清选以及智能收获提供技术支撑。 展开更多
关键词 机器视觉 目标检测 深度学习 马铃薯 YoloV4 MobilenetV3
下载PDF
Tiny YOLOV3目标检测改进 被引量:31
5
作者 马立 巩笑天 欧阳航空 《光学精密工程》 EI CAS CSCD 北大核心 2020年第4期988-995,共8页
针对Tiny YOLOV3目标检测算法在实时检测中对行人等小目标漏检率高的问题,对该算法的特征提取网络、预测网络、损失函数等进行研究改进。首先,在特征提取网络中增加2步长的卷积层,代替原网络中的最大池化层进行下采样;接着,使用深度可... 针对Tiny YOLOV3目标检测算法在实时检测中对行人等小目标漏检率高的问题,对该算法的特征提取网络、预测网络、损失函数等进行研究改进。首先,在特征提取网络中增加2步长的卷积层,代替原网络中的最大池化层进行下采样;接着,使用深度可分离卷积构造反残差块替换传统卷积,降低模型尺寸和参数量,增加高维特征提取;然后,在原网络两尺度预测的基础上增加一尺度,形成三尺度预测;最后,对损失函数中的边界框位置误差项进行优化。实验结果表明,改进后的Tiny YOLOV3算法的目标检测准确率比原算法提高了9.8%,满足实时性要求,具有一定鲁棒性。本文方法能够更好地提取目标特征,多尺度预测和边界框位置误差的改进能更准确地对目标进行检测。 展开更多
关键词 目标检测 TINY YOLOV3 深度可分离卷积 反残差块 多尺度预测
下载PDF
改进YOLOV3算法的视频目标检测 被引量:31
6
作者 宋艳艳 谭励 +1 位作者 马子豪 任雪平 《计算机科学与探索》 CSCD 北大核心 2021年第1期163-172,共10页
由于监控中的行人检测存在背景复杂,目标尺度和姿态多样性及人与周围物体互相遮挡的问题,造成YOLOV3对部分目标检测不准确,会产生误检、漏检或重复检测的情况。因此,在YOLOV3的网络基础上,利用残差结构思想,将浅层特征和深层特征进行上... 由于监控中的行人检测存在背景复杂,目标尺度和姿态多样性及人与周围物体互相遮挡的问题,造成YOLOV3对部分目标检测不准确,会产生误检、漏检或重复检测的情况。因此,在YOLOV3的网络基础上,利用残差结构思想,将浅层特征和深层特征进行上采样连接融合得到104×104尺度检测层,并将K-means算法聚类得到的边界框尺寸应用到各尺度网络层,增加网络对多尺度、多姿态目标的敏感度,提高检测效果。同时,利用预测框对周围其他目标的斥力损失更新YOLOV3损失函数,使预测框向正确的目标靠近,远离错误的目标,降低模型的误检率,以改善目标间互相遮挡而影响的检测效果。实验结果证明,在MOT16数据集上,相比YOLOV3算法,提出的网络模型具有更好的检测效果,证明了方法的有效性。 展开更多
关键词 目标检测 YOLOV3算法 斥力损失 深度学习 视频理解
下载PDF
航拍图像中绝缘子目标检测的研究 被引量:29
7
作者 高强 廉启旺 《电测与仪表》 北大核心 2019年第5期119-123,共5页
使用YOLOv3深度网络模型,针对航拍图像中绝缘子检测的准确性问题进行研究,提出了一种分解聚合算法。为解决目标的错检、漏检等问题,将目标分解成多个存在交集的可变型部件,并对其进行检测。在保证子目标检测精度与速度的前提下,利用各... 使用YOLOv3深度网络模型,针对航拍图像中绝缘子检测的准确性问题进行研究,提出了一种分解聚合算法。为解决目标的错检、漏检等问题,将目标分解成多个存在交集的可变型部件,并对其进行检测。在保证子目标检测精度与速度的前提下,利用各部件之间相交区域的特征及含义,对其进行聚合并重新定义,使检测到的目标区域更准确。由于群体性目标中包含的可变因素过多,原算法无法准确定义,提出的改进方法则可根据必需部件对其进行检测,同时为单独的子目标找出它所隶属的整体,通过多级标签对其进行更深刻意义上的描述。以COCO数据集为例,对比算法改进前后的检测效果。实验结果表明,该方法显著提高了目标检测的准确性,解决了漏检、错检等问题。 展开更多
关键词 YOLOv3 目标检测 分解 聚合
下载PDF
改进的YOLOv3的红外目标检测算法 被引量:28
8
作者 曹红燕 沈小林 +2 位作者 刘长明 牛晓桐 陈燕 《电子测量与仪器学报》 CSCD 北大核心 2020年第8期188-194,共7页
复杂背景下红外多目标图像及视频的检测是目标检测的热点也是难点,为了更准确地检测出复杂背景下的红外目标,将YOLOv3算法进行改进,首先通过在算法的原有基础上增加特征尺度,提高对距离远且背景复杂的待测图像的识别精度,并将BN网络层... 复杂背景下红外多目标图像及视频的检测是目标检测的热点也是难点,为了更准确地检测出复杂背景下的红外目标,将YOLOv3算法进行改进,首先通过在算法的原有基础上增加特征尺度,提高对距离远且背景复杂的待测图像的识别精度,并将BN网络层与卷积神经网络层融合计算得到最后的检测结果,将原来的YOLOv3算法与改进后的算法的结果进行分析对比可得,改进后的算法能够将平均识别精度从64%提高到88%,将mAP从51.73提高到59.28,验证了改进后的YOLOv3算法在红外目标检测下具有更好的性能,更明显的优势。 展开更多
关键词 目标检测 YOLOv3算法 卷积神经网络 BN网络层 特征尺度
下载PDF
改进YOLO V3的道路小目标检测 被引量:27
9
作者 岳晓新 贾君霞 +1 位作者 陈喜东 李广安 《计算机工程与应用》 CSCD 北大核心 2020年第21期218-223,共6页
针对通用目标检测算法在检测小目标时存在效果不佳及漏检率较高等问题,提出了一种基于改进YOLO V3的道路小目标检测算法。对YOLO V3算法网络模型中的聚类算法进行优化,使用DBSCAN+K-Means聚类算法对训练数据集聚类分析,选取更合适的Anch... 针对通用目标检测算法在检测小目标时存在效果不佳及漏检率较高等问题,提出了一种基于改进YOLO V3的道路小目标检测算法。对YOLO V3算法网络模型中的聚类算法进行优化,使用DBSCAN+K-Means聚类算法对训练数据集聚类分析,选取更合适的Anchor Box,以提高检测的平均精度和速度;同时引入Focal Loss损失函数代替原网络模型中的损失函数形成改进的YOLO V3算法。进而与其他目标检测算法在KITTI数据集上对行人目标进行对比检测,发现改进的YOLO V3算法能够有效降低小目标漏检率,大大提高检测的平均精度和检测速度。实验结果表明,在KITTI数据集上,改进的YOLO V3算法检测目标的平均精度达到92.43%,与未改进的YOLO V3算法相比提高了2.36%,且检测速度达到44.52帧/s。 展开更多
关键词 目标检测 YOLO V3 聚类算法 损失函数
下载PDF
改进YOLOv3的车辆实时检测与信息识别技术 被引量:26
10
作者 顾恭 徐旭东 《计算机工程与应用》 CSCD 北大核心 2020年第22期173-184,共12页
在复杂无约束自然场景下对车辆实时检测和相关信息的提取识别一直是计算机视觉领域内重要的研究内容之一。该领域问题的突破不但可以为汽车自动驾驶技术的实现和完善带来实际效果的提升,并且在停车场的自动停车调度算法和实时泊车监控... 在复杂无约束自然场景下对车辆实时检测和相关信息的提取识别一直是计算机视觉领域内重要的研究内容之一。该领域问题的突破不但可以为汽车自动驾驶技术的实现和完善带来实际效果的提升,并且在停车场的自动停车调度算法和实时泊车监控系统的改进上有着重要的现实意义。针对当前实时车辆信息检测中存在的车辆检测区域不完整、精度不高以及无法对场景中较远车辆进行准确定位等相关问题,提出了一种Vehicle-YOLO的实时车辆检测分类模型。该模型在最新的YOLOv3算法基础上,通过更改图像输入参数,增强深度残差网络的特征提取能力,采用5个不同尺寸的特征图依次对潜在车辆的边界框提取等方式来提升车辆实时信息检测的精度和普适性,并通过KITTI、VOC等数据集进行性能验证和分析。实验结果表明,Vehicle-YOLO模型在KITTI数据集上达到了96%的均值平均精度,传输速度约为40 f/s,在精度提升的情况下仍能保持良好的实时检测速率。此外,Vehicle-YOLO检测模型在VOC等其余数据集上的实验结果也展现了不同程度的精度提升,故该模型在常见物体的定位检测中有较好的普适性,相较于传统的物体检测算法模型有更好的表现。 展开更多
关键词 车辆实时检测 YOLOv3 目标定位 卷积神经网络 深度残差网络 特征图
下载PDF
基于改进YOLOv3模型的玉米叶片病虫害检测与识别研究 被引量:24
11
作者 徐会杰 黄仪龙 刘曼 《南京农业大学学报》 CAS CSCD 北大核心 2022年第6期1276-1285,共10页
[目的]本文针对传统农作物叶片病虫害识别模型YOLOv3存在的检测实时性与鲁棒性差以及漏检率高的问题,提出了一种改进的玉米叶片病虫害检测模型——YOLOv3-Corn。[方法]该模型采用Darknet-53作为特征提取网络,将网络输出的8倍特征图与新... [目的]本文针对传统农作物叶片病虫害识别模型YOLOv3存在的检测实时性与鲁棒性差以及漏检率高的问题,提出了一种改进的玉米叶片病虫害检测模型——YOLOv3-Corn。[方法]该模型采用Darknet-53作为特征提取网络,将网络输出的8倍特征图与新加入的4倍下采样特征图进行拼接,建立了104104尺度的检测层;在前期构建的包含6个类别玉米常见病虫害数据集中,利用K-means++聚类算法选取12个先验框并分别匹配到4个不同尺度的检测层中进行目标识别。[结果]在YOLOv3系列模型中,YOLOv3-Corn模型的检测精度均值(mAP)、召回率(Recall)达到了93.31%和93.08%,与YOLOv3模型相比分别提高了4.03%和9.78%。在非YOLO系列模型中,YOLOv3-Corn模型平衡了Faster R-CNN模型的检测速度不足和RetinaNet模型的召回率、精确度不足的问题。[结论]在保证提取相同特征参数、检测时效性好的前提下,YOLOv3-Corn模型有效提高了识别精度。 展开更多
关键词 玉米叶片 病虫害检测 目标检测 YOLOv3模型 Darknet-53
下载PDF
基于改进YOLOv3的安全帽佩戴识别算法 被引量:25
12
作者 许凯 邓超 《激光与光电子学进展》 CSCD 北大核心 2021年第6期292-299,共8页
针对传统安全帽佩戴识别算法检测精度低、鲁棒性差的问题,提出了一种基于深度学习的安全帽佩戴检测方法。该方法以YOLOv3检测算法为基础,对其网络结构和损失函数加以改进。首先,通过增加特征图弥补原YOLOv3算法对小目标检测效果不佳的问... 针对传统安全帽佩戴识别算法检测精度低、鲁棒性差的问题,提出了一种基于深度学习的安全帽佩戴检测方法。该方法以YOLOv3检测算法为基础,对其网络结构和损失函数加以改进。首先,通过增加特征图弥补原YOLOv3算法对小目标检测效果不佳的问题;然后在增加特征图的基础上,使用K-means聚类算法对收集的安全帽数据集进行聚类,选择出合适的先验锚框;最后,采用GIoU Loss作为边界框损失,在损失函数中加入Focal Loss,减少正负样本不均衡带来的误差。实验结果表明,相较于YOLOv3检测算法,改进后的算法在平均精确率上提高了3.47%,在安全帽识别精确率上提高了4.23%,在安全帽识别上具有一定的先进性和有效性。 展开更多
关键词 机器视觉 目标检测 YOLOv3 安全帽检测 K-MEANS算法
原文传递
基于改进YOLOv3算法在垃圾检测上的应用 被引量:22
13
作者 许伟 熊卫华 +1 位作者 姚杰 沈云青 《光电子.激光》 EI CAS CSCD 北大核心 2020年第9期928-938,共11页
现阶段我国主要靠人工对垃圾进行分拣,存在安全系数低、效率低下等问题。传统目标检测方法针对种类繁多,形态各异的垃圾目标不易设计特征,鲁棒性较差,为实现自然环境下垃圾的快速精准识别,本文提出一种基于深度学习的轻量级垃圾分类检... 现阶段我国主要靠人工对垃圾进行分拣,存在安全系数低、效率低下等问题。传统目标检测方法针对种类繁多,形态各异的垃圾目标不易设计特征,鲁棒性较差,为实现自然环境下垃圾的快速精准识别,本文提出一种基于深度学习的轻量级垃圾分类检测方法。该方法通过引入CIOU边框回归损失函数来提高回归框准确率;针对低功耗移动设备终端的部署,提出一种以YOLOv3目标检测算法为基础,结合MobileNetV3的特征提取网络,对算法进行轻量化;在YOLO层加入GRU结构,利用多门控循环神经网络结构对YOLO层中不同大小的特征图建立记忆链接,对深层语义特征的向前融合过程进行过滤和筛选,使得特征融合效果更佳;使用迁移学习预训练的方式来提高模型的特征提取能力和泛化能力。文本采用自制的Garbage数据集对改进后的网络进行训练和测试,结果表明,本文提出的算法识别效果显著,平均准确率为90.50%,高于原YOLOv3网络的平均准确率86.30%,检测速度达到18帧/秒,满足实时检测的需求。实验表明,改进后的网络模型能在保证检测准确率和速度的同时,有效降低模型参数量,具有一定应用价值。 展开更多
关键词 YOLOv3 垃圾检测 GRU 目标检测 深度可分离卷积
原文传递
自适应混合高斯建模的高效运动目标检测 被引量:22
14
作者 刘伟 郝晓丽 吕进来 《中国图象图形学报》 CSCD 北大核心 2020年第1期113-125,共13页
目的如何使快速性与完整性达到平衡是运动目标检测的关键问题。现有的满足快速性的算法容易受到光照的影响,对动态环境的适应能力较弱,获取的目标信息不完整,导致空洞问题的产生。而具有较高完整性的算法复杂度高,运算速度慢,实时性差... 目的如何使快速性与完整性达到平衡是运动目标检测的关键问题。现有的满足快速性的算法容易受到光照的影响,对动态环境的适应能力较弱,获取的目标信息不完整,导致空洞问题的产生。而具有较高完整性的算法复杂度高,运算速度慢,实时性差。为此,本文提出基于自适应混合高斯建模的3帧差分算法。方法利用3帧差分运算简单、可扩展性强、抗干扰能力好的特性,对视频图像进行目标轮廓的提取。针对3帧差分运算导致目标内部信息提取不完整的问题,采用学习率自适应调整的混合高斯背景差分,在模型创建之初,通过较快的模型更新速率,增加背景模型的迭代次数,消除物体运动造成的"鬼影"。在背景模型中的干扰信息消除之后,以目标像素及相邻8像素在当前帧与背景模型中的差异度为依据调整学习率,实现背景模型的自适应修正,增加目标图像的完整性;同时,通过删除冗余的高斯分布,降低算法复杂度。为进一步确保目标边缘的完整及连续,采用边缘对比差分算法,使参与运算的帧数依据目标的运动速度自适应选取,以降低背景点的误判率,使边缘信息尽可能地连续、完整。结果本文算法获取的目标信息完整,且边缘平滑。在提升检测率的同时保证较高的准确率,达到了95.23%,所获目标的完整度提高了28.95%;与传统混合高斯算法相比,时间消耗降低了29.18%,基本达到实时性要求。与基于混合高斯建模的背景差分法(BD-GMM)和基于边缘对比的3帧差分法(TFD-EC)相比,本文算法明显占优。结论实验结果表明,本文算法可以有效抑制动态环境的干扰,降低算法复杂度,既保证实时性,又具有较好的完整性,可广泛应用于智能视频监控、军事应用、工业检测、航空航天等领域。 展开更多
关键词 运动目标检测 3帧差分 边缘对比差分 背景模型 混合高斯建模 自适应学习率
原文传递
基于改进Yolo v3算法的遥感建筑物检测研究 被引量:20
15
作者 董彪 熊风光 +2 位作者 韩燮 况立群 徐清宇 《计算机工程与应用》 CSCD 北大核心 2020年第18期209-213,共5页
针对遥感图像中建筑物检测存在小型建筑物检测难度大、检测过程中无法满足实时性等问题,提出将基于深度学习的目标检测算法Yolo v3应用到建筑物检测场景中。以实时性及泛用性良好的Yolo v3为基本算法,满足实时性的要求;通过改进Yolo v3... 针对遥感图像中建筑物检测存在小型建筑物检测难度大、检测过程中无法满足实时性等问题,提出将基于深度学习的目标检测算法Yolo v3应用到建筑物检测场景中。以实时性及泛用性良好的Yolo v3为基本算法,满足实时性的要求;通过改进Yolo v3的网络结构,以修改特征图分辨率、调整先验框维度为方向加强对小型建筑物的检测能力。实验结果表明,改进的Yolo v3目标检测算法既满足了实时性的要求,且检测精度和召回率达到了91.29%和95.61%,较原算法分别提高了5.35%和2.34%。因此提出的改进方法有效解决了遥感领域小型建筑物的检测问题。 展开更多
关键词 目标检测 遥感 深度学习 Yolo v3 图像处理
下载PDF
基于深度学习的带式输送机非煤异物识别方法 被引量:20
16
作者 胡璟皓 高妍 +1 位作者 张红娟 靳宝全 《工矿自动化》 北大核心 2021年第6期57-62,90,共7页
针对现有非煤异物图像识别法识别目标单一、模型缺乏定位能力等问题,提出一种基于深度学习的带式输送机非煤异物识别方法。该方法以目标检测算法YOLOv3为基础框架,采用Focal Loss函数替换YOLOv3模型中的交叉熵损失函数,对YOLOv3模型进... 针对现有非煤异物图像识别法识别目标单一、模型缺乏定位能力等问题,提出一种基于深度学习的带式输送机非煤异物识别方法。该方法以目标检测算法YOLOv3为基础框架,采用Focal Loss函数替换YOLOv3模型中的交叉熵损失函数,对YOLOv3模型进行改进;通过调节最佳超参数(权重参数α和焦点参数γ)来平衡样本之间的比例,解决非煤异物样本不平衡问题,使模型在训练时更专注学习复杂目标样本特征,提高模型预测性能;搭建了异物数据集,并通过异物数据集对分类性能和速度进行实验。结果表明:Focal Loss函数在异物数据集中表现优于交叉熵损失函数,在γ=2,α=0.75时准确率提升5%,故最佳超参数为γ=2,α=0.75;改进后的YOLOv3模型对锚杆、角铁、螺母3种非煤异物的识别精确率分别提升了约4.7%,3.5%和6.8%,召回率分别提升了约6.6%,3.5%和6.0%;模型在2080Ti平台下每张图像预测类别与实际类别一致,且置信度在94%以上。 展开更多
关键词 带式输送机 非煤异物识别 目标预测 深度学习 YOLOv3 Focal Loss函数
下载PDF
复杂场景下基于改进YOLOv3的车牌定位检测算法 被引量:20
17
作者 马巧梅 王明俊 梁昊然 《计算机工程与应用》 CSCD 北大核心 2021年第7期198-208,共11页
针对在光照、多车辆和低分辨率等复杂场景下车牌定位困难、检测速度慢和精度低等问题,提出了一种改进YOLOv3的方法。采用K-means++方法对实例的标签信息进行聚类分析获取新的anchor尺寸,通过改进后的精简特征提取网络(DarkNet41)来提高... 针对在光照、多车辆和低分辨率等复杂场景下车牌定位困难、检测速度慢和精度低等问题,提出了一种改进YOLOv3的方法。采用K-means++方法对实例的标签信息进行聚类分析获取新的anchor尺寸,通过改进后的精简特征提取网络(DarkNet41)来提高模型的检测效率并降低计算消耗。此外,改进了多尺度特征融合,由3尺度预测增加至4尺度预测并在检测网络中加入了改进后的Inception-SE结构来提高检测的精度,选取了CIoU作为损失函数。预处理方面用MSR(Multi-Scale Retinex)算法对数据进行增强。实验分析表明,采用该算法mAP(均值平均精度)达到了98.84%,检测速度达到36.4帧/s,与YOLOv3模型以及其他算法相比具有更好的准确性和实时性。 展开更多
关键词 目标检测 YOLOv3 复杂场景 车牌定位 CIoU Inception-SE结构
下载PDF
基于改进YOLO v3的目标检测算法 被引量:19
18
作者 赵琼 李宝清 李唐薇 《激光与光电子学进展》 CSCD 北大核心 2020年第12期305-313,共9页
随着深度学习的不断发展与广泛运用,基于深度学习的目标检测算法已成为新的主流。为了进一步提高卷积神经网络YOLO v3(You only look once v3)的检测精度,在原算法的网络结构上添加卷积层模块对样本进行目标背景分类,并粗略调整特征图... 随着深度学习的不断发展与广泛运用,基于深度学习的目标检测算法已成为新的主流。为了进一步提高卷积神经网络YOLO v3(You only look once v3)的检测精度,在原算法的网络结构上添加卷积层模块对样本进行目标背景分类,并粗略调整特征图上的锚框大小。该模块输出目标背景概率后,过滤掉背景概率值低于设定阈值的样本,从而解决原算法中存在的正负样本比例失衡的问题。使用调整过的锚框替代原算法中直接由聚类生成固定大小的锚框,该过程为边界框的预测提供更优的初始值。在VOC数据集上的实验结果表明,相较于原算法,改进的YOLO v3具有更高的检测精度。 展开更多
关键词 机器视觉 目标检测 卷积神经网络 YOLO v3 锚框
原文传递
基于YOLOv3-CIoU的松材线虫病树检测方法研究 被引量:18
19
作者 李凤迪 申卫星 +4 位作者 吴杰芳 孙丰刚 徐力 刘振宇 兰鹏 《山东农业大学学报(自然科学版)》 北大核心 2021年第2期224-233,共10页
松材线虫病被称为松树的癌症,及时发现并处置松材线虫病树是防止疫情扩散的重要手段。人工踏查、遥感影像等手段难以有效满足复杂林区疫情监测的需求。为快速、准确发现松材线虫病树,提高处置效率,本文提出了一种基于改进YOLOv3算法的... 松材线虫病被称为松树的癌症,及时发现并处置松材线虫病树是防止疫情扩散的重要手段。人工踏查、遥感影像等手段难以有效满足复杂林区疫情监测的需求。为快速、准确发现松材线虫病树,提高处置效率,本文提出了一种基于改进YOLOv3算法的松材线虫树检测方法。首先,使用小型无人机机载高分辨率数码相机在不同空间位置采集松材线虫病树图像并构建Pascal VOC数据集;随后针对YOLOv3算法存在训练过程IoU置空、平均损失下降缓慢等问题,提出了改进的YOLOv3-CIoU方法,使算法训练快,在小数据量时即实现高精度检测;最后通过高性能计算平台对改进的YOLOv3-CIoU模型进行训练测试,并与其他方法进行对比分析。结果表明:改进后的YOLOv3-CIoU模型在测试集上准确率达98.88%,较YOLOv3算法提升5%以上;在移动终端上平均单张图像检测速度为0.32 s,较改进前提升13%。与Faster R-CNN、SSD等方法相比,改进算法在模型检测准确率、缩短模型训练时间、目标边缘框定精度等方面也有较大提升。因此,改进后的YOLOv3-CIoU模型在多个评估指标中具有良好的性能,可有效提高松材线虫病树检测效率,对降低松材线虫病树监测投入,保障林区防疫监测精准高效具有重要的实际意义。 展开更多
关键词 松材线虫病树 YOLOv3-CIOU 目标检测
下载PDF
基于改进YOLOv3-Tiny的番茄苗分级检测 被引量:17
20
作者 张秀花 静茂凯 +3 位作者 袁永伟 尹义蕾 李恺 王春辉 《农业工程学报》 EI CAS CSCD 北大核心 2022年第1期221-229,共9页
为了提高番茄苗分选移栽分级检测精度,该研究提出了YOLOv3-Tiny目标检测改进模型。首先建立了番茄穴盘苗数据集,使用K-means++算法重新生成数据集锚定框,提高网络收敛速度和特征提取能力;其次为目标检测模型添加SPP空间金字塔池化,将穴... 为了提高番茄苗分选移栽分级检测精度,该研究提出了YOLOv3-Tiny目标检测改进模型。首先建立了番茄穴盘苗数据集,使用K-means++算法重新生成数据集锚定框,提高网络收敛速度和特征提取能力;其次为目标检测模型添加SPP空间金字塔池化,将穴孔局部和整体特征融合,提高了对弱苗的召回率;同时加入路径聚合网络(PANet),提升细粒度检测能力;引入了SAM空间注意力机制,提高对番茄苗的关注,减少背景干扰;增加了ASFF(Adaptively Spatial Feature Fusion)自适应特征融合网络,能够使目标检测模型对多个级别的特征进行空间滤波;采用CIoU损失函数策略,提高模型收敛效果。改进的YOLOv3-Tiny目标检测模型经过数据集训练,在测试集上能够达到平均精度均值为97.64%,相比YOLOv3-Tiny模型提高了3.47个百分点。消融试验验证了网络结构改进和训练策略是有效的,并将改进的YOLOv3-Tiny目标检测算法与5种目标检测算法进行对比,发现改进的YOLOv3-Tiny目标检测模型在重合度阈值为50%的条件下平均精度均值为97.64%。单张图像处理时间为5.03ms,较其他目标检测算法具有明显的优势,验证了该模型能够满足番茄苗分级检测精度要求,可以为幼苗分选检测方法提供参考。 展开更多
关键词 机器视觉 图像处理 穴盘育苗 幼苗分级 目标检测 YOLOv3-Tiny 自适应特征融合
下载PDF
上一页 1 2 18 下一页 到第
使用帮助 返回顶部