The cis and trans isomers separation of 2-butene-1,4-diol and lafutidine were studied by HPLC on two kinds of chiral columns: (S,S)-Whelk-O 1 and ChiraSpher. The isomers of 2-butene-1,4-diol can be separated on both c...The cis and trans isomers separation of 2-butene-1,4-diol and lafutidine were studied by HPLC on two kinds of chiral columns: (S,S)-Whelk-O 1 and ChiraSpher. The isomers of 2-butene-1,4-diol can be separated on both chiral columns while the isomers of lafutidine can only be resolved on ChiraSpher column. The influence of different type and amount of mobile phase modifier on the isomers separation was extensively studied. The resolution of cis and trans isomers of 2-butene-1,4-diol was 2.61on (S,S)-Whelk-O 1 column with hexane-ethanol (97:3, v/v) as the mobile phase. The resolution of lafutidine was 1.89 on ChiraSpher column with hexane-ethanol-THF-diethylamine (92:3:5:0.1, v/v/v/v) as the mobile phase. LC-MS methods were developed to identify the isomer peaks.展开更多
A new soluble polymer on 2-[(2 E)-1-methyl-2-buten-1-yl]aniline and its copolymers with aniline basis have been synthesized in various molar ratios. For all samples, the electrical conductivity, morphology, solubility...A new soluble polymer on 2-[(2 E)-1-methyl-2-buten-1-yl]aniline and its copolymers with aniline basis have been synthesized in various molar ratios. For all samples, the electrical conductivity, morphology, solubility, electrochemical properties, as well as spectral and molecular mass characteristics have been studied, and a comparative analysis with polyaniline has been carried out. The substituent introduced into the aniline aromatic ring significantly improves the solubility in typical organic solvents of a high molecular weight product. The morphology of the test compounds depends on the co-monomer ratio. As the content of the substituted aniline in the initial mixture increases, the morphology of the polymer changes from the inherent polyaniline fibrous microstructure to the globular one with irregular substituted polyaniline shapes and sizes. Electrochemical study of the samples revealed that the higher the oxidation potential, the wider the band gap(ranging from 2.00 to 2.15). The electrical conductivity decreases in proportion to the increase in the substituted aniline concentration of the initial co-monomer mixture and amounts to 12.5–35.7 × 10~6 nSm.展开更多
文摘The cis and trans isomers separation of 2-butene-1,4-diol and lafutidine were studied by HPLC on two kinds of chiral columns: (S,S)-Whelk-O 1 and ChiraSpher. The isomers of 2-butene-1,4-diol can be separated on both chiral columns while the isomers of lafutidine can only be resolved on ChiraSpher column. The influence of different type and amount of mobile phase modifier on the isomers separation was extensively studied. The resolution of cis and trans isomers of 2-butene-1,4-diol was 2.61on (S,S)-Whelk-O 1 column with hexane-ethanol (97:3, v/v) as the mobile phase. The resolution of lafutidine was 1.89 on ChiraSpher column with hexane-ethanol-THF-diethylamine (92:3:5:0.1, v/v/v/v) as the mobile phase. LC-MS methods were developed to identify the isomer peaks.
基金carried out within the framework of the state task program (No. AAAA-A19-119020890014-7)
文摘A new soluble polymer on 2-[(2 E)-1-methyl-2-buten-1-yl]aniline and its copolymers with aniline basis have been synthesized in various molar ratios. For all samples, the electrical conductivity, morphology, solubility, electrochemical properties, as well as spectral and molecular mass characteristics have been studied, and a comparative analysis with polyaniline has been carried out. The substituent introduced into the aniline aromatic ring significantly improves the solubility in typical organic solvents of a high molecular weight product. The morphology of the test compounds depends on the co-monomer ratio. As the content of the substituted aniline in the initial mixture increases, the morphology of the polymer changes from the inherent polyaniline fibrous microstructure to the globular one with irregular substituted polyaniline shapes and sizes. Electrochemical study of the samples revealed that the higher the oxidation potential, the wider the band gap(ranging from 2.00 to 2.15). The electrical conductivity decreases in proportion to the increase in the substituted aniline concentration of the initial co-monomer mixture and amounts to 12.5–35.7 × 10~6 nSm.