采用激光选区熔化技术(selective laser melting,SLM)制备18Ni300时效模具钢.通过扫描电子显微镜(scanning electron microscope,SEM),研究试样的枝晶生长取向和凝固组织状态.利用人工神经网络对激光功率、扫描速度和扫描间距进行重要...采用激光选区熔化技术(selective laser melting,SLM)制备18Ni300时效模具钢.通过扫描电子显微镜(scanning electron microscope,SEM),研究试样的枝晶生长取向和凝固组织状态.利用人工神经网络对激光功率、扫描速度和扫描间距进行重要性分析,同时采用BP(back propagation,BP)神经网络以工艺参数为特征对材料的抗拉强度进行预测,应用遗传算法(genetic algorithm,GA)对神经网络权值和阈值进行寻优.结果表明,试样组织主要呈树枝柱状生长,外延生长明显,组织取向主要取决于熔池底部的凝固条件;熔池顶部易发生柱状晶向等轴晶转变(columnar to equiaxed transition,CET),可以通过调节工艺参数来控制转变区的大小;热毛细对流导致熔池其它区域也出现枝向转变区.人工神经网络重要性预测结果由大到小的顺序是激光功率、扫描速度、扫描间距,BP拟合结果与实际结果较为接近,决定系数R^2=0.73.展开更多
文摘采用激光选区熔化技术(selective laser melting,SLM)制备18Ni300时效模具钢.通过扫描电子显微镜(scanning electron microscope,SEM),研究试样的枝晶生长取向和凝固组织状态.利用人工神经网络对激光功率、扫描速度和扫描间距进行重要性分析,同时采用BP(back propagation,BP)神经网络以工艺参数为特征对材料的抗拉强度进行预测,应用遗传算法(genetic algorithm,GA)对神经网络权值和阈值进行寻优.结果表明,试样组织主要呈树枝柱状生长,外延生长明显,组织取向主要取决于熔池底部的凝固条件;熔池顶部易发生柱状晶向等轴晶转变(columnar to equiaxed transition,CET),可以通过调节工艺参数来控制转变区的大小;热毛细对流导致熔池其它区域也出现枝向转变区.人工神经网络重要性预测结果由大到小的顺序是激光功率、扫描速度、扫描间距,BP拟合结果与实际结果较为接近,决定系数R^2=0.73.