Using seven well-replicated Qilian juniper (Sabina przewalskii Kom.) ring-width chronologies developed at Zongwulong and Shalike Mts. in the northeastern part of the Qaidam Basin annual precipitation from previous Jul...Using seven well-replicated Qilian juniper (Sabina przewalskii Kom.) ring-width chronologies developed at Zongwulong and Shalike Mts. in the northeastern part of the Qaidam Basin annual precipitation from previous July to current June in the recent 1000 years was re- constructed for Delingha. The reconstruction can capture 63.1% of precipitation variance and the equation was stable over time. For the reconstructed precipitation, wet periods occurred in AD1520—1633 and 1933—2001, whereas dry intervals in 1429—1519 and 1634—1741. In ad- dition, the magnitude in precipitation variation was lower before 1430 with about 15 mm, but it increased to 30 mm during the period of 1430 to 1850. After 1850, the precipitation variance de- creased again. In contrast to the increase in temperature, a decrease in annual precipitation was evident since the 1990s. The agreement in low-frequency variation between the reconstruction and the glacier accumulation and particulate content in Dunde ice cores during the recent several hundred years suggested that the precipitation reconstructed in this study was rather reliable, and represented a regional signal. This 1000-year reconstruction could benefit our understanding of climatic variation in decadal to century-scale in this region, and provide basic data to climate models and to prediction of future climate in the 21st century.展开更多
为了实现我国特高压交流试验基地单回试验线段电晕损失的长期准确测量及电晕损失规律,设计研制了一套电晕损失监测系统。该系统采用混合型光供电电子式电流互感器采集电晕电流信号以实现试验线段电流的地面安全可靠测量;采用特高压电容...为了实现我国特高压交流试验基地单回试验线段电晕损失的长期准确测量及电晕损失规律,设计研制了一套电晕损失监测系统。该系统采用混合型光供电电子式电流互感器采集电晕电流信号以实现试验线段电流的地面安全可靠测量;采用特高压电容式电压互感器(CVT)测量电压,并采用高精度小型电压互感器二次分压,实现线路电压的准确可靠测量;电流和电压信号均采用光纤传输;基于虚拟仪器技术,采用高精度多通道高速同步数据采集卡,同步采集特高压线段电晕电流、电压信号,采用正弦波参数法,计算得出电压和电流的功率因数角,进而算出电晕损失值。测试光电模块OPDL-16(Optical Data Link-16)和1000kV CVT的误差。一段时间的实际运行表明,该系统满足测量精度要求,可在不同天气条件下对特高压试验线段的电晕损失进行长期实时准确监测,满足特高压电晕损失的研究需要。展开更多
基金the National KeyBasic Research Development Project of China(Grant No.19980408)the Key Project of Knowledge Innovation of the CAs(Grant No.KZcx2-314) the National Key Project of Science and Technology(Grant No.2001-BA611B-O1).
文摘Using seven well-replicated Qilian juniper (Sabina przewalskii Kom.) ring-width chronologies developed at Zongwulong and Shalike Mts. in the northeastern part of the Qaidam Basin annual precipitation from previous July to current June in the recent 1000 years was re- constructed for Delingha. The reconstruction can capture 63.1% of precipitation variance and the equation was stable over time. For the reconstructed precipitation, wet periods occurred in AD1520—1633 and 1933—2001, whereas dry intervals in 1429—1519 and 1634—1741. In ad- dition, the magnitude in precipitation variation was lower before 1430 with about 15 mm, but it increased to 30 mm during the period of 1430 to 1850. After 1850, the precipitation variance de- creased again. In contrast to the increase in temperature, a decrease in annual precipitation was evident since the 1990s. The agreement in low-frequency variation between the reconstruction and the glacier accumulation and particulate content in Dunde ice cores during the recent several hundred years suggested that the precipitation reconstructed in this study was rather reliable, and represented a regional signal. This 1000-year reconstruction could benefit our understanding of climatic variation in decadal to century-scale in this region, and provide basic data to climate models and to prediction of future climate in the 21st century.
文摘为了实现我国特高压交流试验基地单回试验线段电晕损失的长期准确测量及电晕损失规律,设计研制了一套电晕损失监测系统。该系统采用混合型光供电电子式电流互感器采集电晕电流信号以实现试验线段电流的地面安全可靠测量;采用特高压电容式电压互感器(CVT)测量电压,并采用高精度小型电压互感器二次分压,实现线路电压的准确可靠测量;电流和电压信号均采用光纤传输;基于虚拟仪器技术,采用高精度多通道高速同步数据采集卡,同步采集特高压线段电晕电流、电压信号,采用正弦波参数法,计算得出电压和电流的功率因数角,进而算出电晕损失值。测试光电模块OPDL-16(Optical Data Link-16)和1000kV CVT的误差。一段时间的实际运行表明,该系统满足测量精度要求,可在不同天气条件下对特高压试验线段的电晕损失进行长期实时准确监测,满足特高压电晕损失的研究需要。