Three treatments consisting of 0%,15%,and 30%seawater were investigated to analyse the ecotypic variabilities among five populations of Jerusalem artichoke(Helianthus tuberosus)regarding their responses to seawater st...Three treatments consisting of 0%,15%,and 30%seawater were investigated to analyse the ecotypic variabilities among five populations of Jerusalem artichoke(Helianthus tuberosus)regarding their responses to seawater stress under a hydroponic culture system.Analyses were done 2,4,and 6 days after treatments.The 15%and 30%seawater treatments reduced the growth rates of roots and shoots of H.tuberosus populations.The activities of superoxide dismutase, peroxidase,and catalase majored in the leaves were stimulated under the seawater stress.The electrolyte leakage and malondialdehyde contents of the leaves were also stimulated owing to seawater stress.The contents of proline and soluble- sugars in the leaves increased significantly with increasing seawater concentrations.The concentrations of Na+,K+,and Cl-in the aerial parts and roots increased with an increase in the seawater concentration throughout the experimental period.There were ecotypic differences among the five populations of H.tuberosus as evidenced by the analyses of the above items in both aerial parts and roots under seawater treatment.The magnitude of the ecotypic variance components indicated that a substantial proportion of the total variation for these physiological and biochemical responses were owing to ecotype,indicating the possibility of improvement through hybridization and selection.展开更多
A hydroponic experiment with six treatments, i.e., 0% seawater (control), 10% seawater, 25% seawater, 0% seawater + N (7.5 mmol L-1 NaNO3), 10% seawater + N (7.5 mmol L-1 NaO3), and 25% seawater + N (7.5 mmo...A hydroponic experiment with six treatments, i.e., 0% seawater (control), 10% seawater, 25% seawater, 0% seawater + N (7.5 mmol L-1 NaNO3), 10% seawater + N (7.5 mmol L-1 NaO3), and 25% seawater + N (7.5 mmol L-1 NaNO3), was carried out to study the effect of nitrogen addition on the growth and physiological and biochemical characteristics of Jerusalem artichoke (Helianthus tuberosus) seedlings under seawater stress. The 10% seawater stress treatment had the least effect on plant growth while at 25% seawater growth was significantly inhibited. The malondialdehyde content and electrolyte leakage in leaves under 10% seawater were similar to those of the control, but significantly higher under the 25% seawater stress. The activities of superoxide dismutase, peroxidase and catalase in the leaves increased concomitantly with increasing seawater concentration and time. Proline and soluble-sugars in the leaves and Na^+, K^+, and Cl- contents in shoots and roots increased significantly with the concentration of seawater increasing. Nitrogen addition resulted in increasing fresh and dry weights of shoots and roots compared with seawater treatment without N. Nitrogen supplementation also significantly enhanced the activities of antioxidant enzymes in leaves. Addition of N to seawater enhanced the contents of proline and soluble-sugars in the leaves and K^+ and total-N in the aerial parts and roots of H. tuberosus, but it resulted in declined concentrations of Na^+ and Cl- in the aerial parts and roots. Nitrogen addition ameliorated the toxicity of seawater by improving the antioxidative enzymes, accumulating of proiine and soluble-sugars, and altering the distribution of inorganic ions in H. tuberosus.展开更多
基金Project Supported by the National Key Project of Scientific and Technical Supporting Programs Funded by Ministry of Science&Technology of China(Nos.2006BAD09A08-03-01 and 2006BAD09A04-05)the National High Technology Research and Development Program(863 Program)of China(No.2007AA091702)the Opening Program of Jiangsu Provincial Key Laboratory of Coastal Wetland Bio-resource and Environmental Protection(JLCBE)(No.JLCBE07001)
文摘Three treatments consisting of 0%,15%,and 30%seawater were investigated to analyse the ecotypic variabilities among five populations of Jerusalem artichoke(Helianthus tuberosus)regarding their responses to seawater stress under a hydroponic culture system.Analyses were done 2,4,and 6 days after treatments.The 15%and 30%seawater treatments reduced the growth rates of roots and shoots of H.tuberosus populations.The activities of superoxide dismutase, peroxidase,and catalase majored in the leaves were stimulated under the seawater stress.The electrolyte leakage and malondialdehyde contents of the leaves were also stimulated owing to seawater stress.The contents of proline and soluble- sugars in the leaves increased significantly with increasing seawater concentrations.The concentrations of Na+,K+,and Cl-in the aerial parts and roots increased with an increase in the seawater concentration throughout the experimental period.There were ecotypic differences among the five populations of H.tuberosus as evidenced by the analyses of the above items in both aerial parts and roots under seawater treatment.The magnitude of the ecotypic variance components indicated that a substantial proportion of the total variation for these physiological and biochemical responses were owing to ecotype,indicating the possibility of improvement through hybridization and selection.
基金Project supported by the National Science and Technology Ministry (Nos.2006BAD09A08-03-01 and 2006BAD09A04-05)the National High Technology Research and Development Program (863 Program) of China (No.2007AA091702)the Opening Program of Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresource and Environmental Protection (JLCBE) (No.JLCBE07001).
文摘A hydroponic experiment with six treatments, i.e., 0% seawater (control), 10% seawater, 25% seawater, 0% seawater + N (7.5 mmol L-1 NaNO3), 10% seawater + N (7.5 mmol L-1 NaO3), and 25% seawater + N (7.5 mmol L-1 NaNO3), was carried out to study the effect of nitrogen addition on the growth and physiological and biochemical characteristics of Jerusalem artichoke (Helianthus tuberosus) seedlings under seawater stress. The 10% seawater stress treatment had the least effect on plant growth while at 25% seawater growth was significantly inhibited. The malondialdehyde content and electrolyte leakage in leaves under 10% seawater were similar to those of the control, but significantly higher under the 25% seawater stress. The activities of superoxide dismutase, peroxidase and catalase in the leaves increased concomitantly with increasing seawater concentration and time. Proline and soluble-sugars in the leaves and Na^+, K^+, and Cl- contents in shoots and roots increased significantly with the concentration of seawater increasing. Nitrogen addition resulted in increasing fresh and dry weights of shoots and roots compared with seawater treatment without N. Nitrogen supplementation also significantly enhanced the activities of antioxidant enzymes in leaves. Addition of N to seawater enhanced the contents of proline and soluble-sugars in the leaves and K^+ and total-N in the aerial parts and roots of H. tuberosus, but it resulted in declined concentrations of Na^+ and Cl- in the aerial parts and roots. Nitrogen addition ameliorated the toxicity of seawater by improving the antioxidative enzymes, accumulating of proiine and soluble-sugars, and altering the distribution of inorganic ions in H. tuberosus.