This article deals with the solute transport in a single fracture with the combination of the Lattice Boltzmann Method (LBM) and Modified Moment Propagation (MMP) method, and this mixed method is proved to have se...This article deals with the solute transport in a single fracture with the combination of the Lattice Boltzmann Method (LBM) and Modified Moment Propagation (MMP) method, and this mixed method is proved to have several advantages over the LBM and Moment Propagation (MP) mixed method which leads to negative concentrations under some conditions in computation. The disadvantage of LBM/MP has been overcome to a certain extent. Also, this work presents an LBM solution of modeling single fractures with uniformly or randomly distributed grains, which can provide a new path of applying the LBM in solute transport simulation in fractures.展开更多
The electroosmotic flow near an earthworm surface is simulated numerically to further understand the anti soil adhesion mechanism of earthworm. A lattice Poisson method is employed to solve electric potential and char...The electroosmotic flow near an earthworm surface is simulated numerically to further understand the anti soil adhesion mechanism of earthworm. A lattice Poisson method is employed to solve electric potential and charge .distributiorts in the electric double layer along the earthworm surface. The external electric field is obtained by solving a Laplace equation. The electroosmotic flow controlled by the Navier-Stokes equations with external body force is simulated by the lattice Boltzmann method. A benchmark test shows that accurate electric potential distributions can be obtained by the LPM. The simulation shows that the moving vortices, which probably contribute to anti soil adhesion, are formed near earthworm body surface by the nonuniform and variational electrical force.展开更多
A single-phase free surface tracking model based on the Lattice Boltzmann Method (LBM), which has capability of simulating liquid-gas system with the assumption that the gas phase has only negligible influence on th...A single-phase free surface tracking model based on the Lattice Boltzmann Method (LBM), which has capability of simulating liquid-gas system with the assumption that the gas phase has only negligible influence on the liquid phase, is utilized to simulate the flow of a drop impacting on a liquid film. Three typical outcomes in the flows, i.e., deposition, crown and splash, which have been observed in the previous experiments, are obtained in the present three dimensional numerical simulations. The numerical results are consistent with the experimental and analytical results available.展开更多
The dynamics of two-phase flows with a constant driving force inside a micro-channel is studied by using the Lattice Boltzmann Method (LBM) and the Shan-Chen multiphase model in this article. Flow regimes under diff...The dynamics of two-phase flows with a constant driving force inside a micro-channel is studied by using the Lattice Boltzmann Method (LBM) and the Shan-Chen multiphase model in this article. Flow regimes under different wall wettabilities and over smooth and grooved geometric surfaces are investigated. It is found that flow behaviors are strongly affected by the wall wettability and topography. Our results show that the LBM is efficient and accurate, and has very good application prospect in the study of drag reduction of microscopic seepage of reservoir.展开更多
The apparent slip between solid wall and liquid is studied by using the Lattice Boltzmann Method (LBM) and the Shan-Chen multiphase model in this paper. With a no-slip bounce-back scheme applied to the interface, fl...The apparent slip between solid wall and liquid is studied by using the Lattice Boltzmann Method (LBM) and the Shan-Chen multiphase model in this paper. With a no-slip bounce-back scheme applied to the interface, flow regimes under different wall wettabilities are investigated. Because of the wall wettability, liquid apparent slip is observed. Slip lengths for different wall wettabilities are found to collapse nearly onto a single curve as a function of the static contact angle, and thereby a relationship between apparent slip length and contact angle is suggested. Our results also show that the wall wettability leads to the formation of a low-density layer between solid wall and liquid, which produced apparent slip in the micro-scale.展开更多
The lattice Boltzmann method (LBM) is used to examine free convection of nanofluids. The space between the cold outer square and heated inner circular cylinders is filled with water including various kinds of nanopa...The lattice Boltzmann method (LBM) is used to examine free convection of nanofluids. The space between the cold outer square and heated inner circular cylinders is filled with water including various kinds of nanoparticles: TiO2, Ag, Cu, and A1203. The Brinkman and Maxwell-Garnetts models are used to simulate the viscosity and the effective thermal conductivity of nanofluids, respectively. Results from the performed numerical analysis show good agreement with those obtained from other numerical meth- ods. A variety of the Rayleigh number, the nanoparticle volume fraction, and the aspect ratio are examined. According to the results, choosing copper as the nanoparticle leads to obtaining the highest enhancement for this problem. The results also indicate that the maximum value of enhancement occurs at λ =2.5 when Ra = 106 while at A = 1.5 for other Rayleigh numbers.展开更多
The settling and hydrodynamic properties of 3-D fractal flocs in quiescent water are investigated with a numerical model based on the Lattice Boltzmann Method (LBM), with considering the settling velocity, hydrodyna...The settling and hydrodynamic properties of 3-D fractal flocs in quiescent water are investigated with a numerical model based on the Lattice Boltzmann Method (LBM), with considering the settling velocity, hydrodynamic drag force and infra-floc flow. The comparisons of floc settling velocities and effective densities indicate that the numerical results present good agreements with observations in field and at laboratory. The results show that the drag force Fo increases with the floc size dr according to the relationship FD ∝ df^3. Moreover, the intra-floc flow field and movement of the pore water provide a better understanding of the intra-floc flow from the microscopic viewpoint. The results also indicate that the lattice Boltzmann method is a promising approach to reveal the mechanisms of the flocculation in aquatic environments.展开更多
The Lattice Boltzmann Method (LBM) was investigated to solve triangular cavity flow and free-surface problems in hydraulic dynamics. Some cases of triangular cavity flow and backward step flow were simulated to show...The Lattice Boltzmann Method (LBM) was investigated to solve triangular cavity flow and free-surface problems in hydraulic dynamics. Some cases of triangular cavity flow and backward step flow were simulated to show the efficiency and stability of this method. Two-dimensional partial dam breaking problem and the propagation and diffraction of dam-break wave around rectangular and circular cylinder were numerically studied successfully. Excellent agreement was obtained between numerical predictions and available results.展开更多
Aerodynamic simulation of high-speed trains has been carried out by using Lattice Boltzmann Method (LBM). Non-simplified train model was used and the number of space grids reached tens of millions. All results under d...Aerodynamic simulation of high-speed trains has been carried out by using Lattice Boltzmann Method (LBM). Non-simplified train model was used and the number of space grids reached tens of millions. All results under different working conditions reflected the actual situation.展开更多
基金the National Natural Science Foundation of China (Grant No. 50579012)
文摘This article deals with the solute transport in a single fracture with the combination of the Lattice Boltzmann Method (LBM) and Modified Moment Propagation (MMP) method, and this mixed method is proved to have several advantages over the LBM and Moment Propagation (MP) mixed method which leads to negative concentrations under some conditions in computation. The disadvantage of LBM/MP has been overcome to a certain extent. Also, this work presents an LBM solution of modeling single fractures with uniformly or randomly distributed grains, which can provide a new path of applying the LBM in solute transport simulation in fractures.
文摘The electroosmotic flow near an earthworm surface is simulated numerically to further understand the anti soil adhesion mechanism of earthworm. A lattice Poisson method is employed to solve electric potential and charge .distributiorts in the electric double layer along the earthworm surface. The external electric field is obtained by solving a Laplace equation. The electroosmotic flow controlled by the Navier-Stokes equations with external body force is simulated by the lattice Boltzmann method. A benchmark test shows that accurate electric potential distributions can be obtained by the LPM. The simulation shows that the moving vortices, which probably contribute to anti soil adhesion, are formed near earthworm body surface by the nonuniform and variational electrical force.
基金the National Natural Science Foundation of China (Grant No. 10472062)the Special Scientific Foundation for Selection and Cultivation of Excellent Young Scholars in Shanghai and the Shanghai Leading Academic Discipline Project (Grant No.Y0103)
文摘A single-phase free surface tracking model based on the Lattice Boltzmann Method (LBM), which has capability of simulating liquid-gas system with the assumption that the gas phase has only negligible influence on the liquid phase, is utilized to simulate the flow of a drop impacting on a liquid film. Three typical outcomes in the flows, i.e., deposition, crown and splash, which have been observed in the previous experiments, are obtained in the present three dimensional numerical simulations. The numerical results are consistent with the experimental and analytical results available.
基金supported by the National Natural Science Foundation of China(Grant No.50874071)the National High Technology Research and Development Program of China(863 Program,Grant No.2008AA06Z201)+3 种基金the Program of Science and Technology Commission of Shanghai Municipality(Grant No.071605102)the project of Shanghai Education Commission Research Innovation(Grand No.08ZZ45)the Program for Changjiang Scholars and Innovative Research Team in Universities(Grant No.IRT0844)the China Postdoctoral Science Foundation(Grant No.20090450687)
文摘The dynamics of two-phase flows with a constant driving force inside a micro-channel is studied by using the Lattice Boltzmann Method (LBM) and the Shan-Chen multiphase model in this article. Flow regimes under different wall wettabilities and over smooth and grooved geometric surfaces are investigated. It is found that flow behaviors are strongly affected by the wall wettability and topography. Our results show that the LBM is efficient and accurate, and has very good application prospect in the study of drag reduction of microscopic seepage of reservoir.
基金the National Natural Science Foundation of China (Grant No. 50874071)the National High Technology Research and Development of China (863 Program,Grant No. 2008AA06Z201)+1 种基金the Key Program of Science and Technology Commission of Shanghai Municipality (Grant No.071605102)the Leading Talent Funding of Shanghai
文摘The apparent slip between solid wall and liquid is studied by using the Lattice Boltzmann Method (LBM) and the Shan-Chen multiphase model in this paper. With a no-slip bounce-back scheme applied to the interface, flow regimes under different wall wettabilities are investigated. Because of the wall wettability, liquid apparent slip is observed. Slip lengths for different wall wettabilities are found to collapse nearly onto a single curve as a function of the static contact angle, and thereby a relationship between apparent slip length and contact angle is suggested. Our results also show that the wall wettability leads to the formation of a low-density layer between solid wall and liquid, which produced apparent slip in the micro-scale.
文摘The lattice Boltzmann method (LBM) is used to examine free convection of nanofluids. The space between the cold outer square and heated inner circular cylinders is filled with water including various kinds of nanoparticles: TiO2, Ag, Cu, and A1203. The Brinkman and Maxwell-Garnetts models are used to simulate the viscosity and the effective thermal conductivity of nanofluids, respectively. Results from the performed numerical analysis show good agreement with those obtained from other numerical meth- ods. A variety of the Rayleigh number, the nanoparticle volume fraction, and the aspect ratio are examined. According to the results, choosing copper as the nanoparticle leads to obtaining the highest enhancement for this problem. The results also indicate that the maximum value of enhancement occurs at λ =2.5 when Ra = 106 while at A = 1.5 for other Rayleigh numbers.
基金supported by the National Natural Science Foundation of China (Grant Nos. 50779046, 50279029)
文摘The settling and hydrodynamic properties of 3-D fractal flocs in quiescent water are investigated with a numerical model based on the Lattice Boltzmann Method (LBM), with considering the settling velocity, hydrodynamic drag force and infra-floc flow. The comparisons of floc settling velocities and effective densities indicate that the numerical results present good agreements with observations in field and at laboratory. The results show that the drag force Fo increases with the floc size dr according to the relationship FD ∝ df^3. Moreover, the intra-floc flow field and movement of the pore water provide a better understanding of the intra-floc flow from the microscopic viewpoint. The results also indicate that the lattice Boltzmann method is a promising approach to reveal the mechanisms of the flocculation in aquatic environments.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 10371118, 90411009).
文摘The Lattice Boltzmann Method (LBM) was investigated to solve triangular cavity flow and free-surface problems in hydraulic dynamics. Some cases of triangular cavity flow and backward step flow were simulated to show the efficiency and stability of this method. Two-dimensional partial dam breaking problem and the propagation and diffraction of dam-break wave around rectangular and circular cylinder were numerically studied successfully. Excellent agreement was obtained between numerical predictions and available results.
文摘Aerodynamic simulation of high-speed trains has been carried out by using Lattice Boltzmann Method (LBM). Non-simplified train model was used and the number of space grids reached tens of millions. All results under different working conditions reflected the actual situation.