The generation of stratospheric gravity waves (GWs) due to typhoon is simulated by using a meso-scale model (WRF) with a typhoon case, the Matsa in 2005. An 8-day model run that covers the major stages of the Mats...The generation of stratospheric gravity waves (GWs) due to typhoon is simulated by using a meso-scale model (WRF) with a typhoon case, the Matsa in 2005. An 8-day model run that covers the major stages of the Matsa's development reproduces the key features of the typhoon. For example, good agreements in the typhoon's track, the intensity, and the spiral clouds, as well as mean state of stratosphere, are seen between the simulation results and the observation. Simulation results clearly show that with typhoon propagates northwestward, pronounced stratospheric GWs are generated continuously in the vicinity of Matsa. The GWs exhibit the typical curve-like wave fronts away from the Typhoon Matsa, and propagate preferentially in the up- stream of the background winds. These characteristics reflect that the stratospheric GWs are closely associated with the ty- phoon, and thus the GWs are referred to as Tropical Cyclone related Gravity Waves (TC-GWs). The results also show that these waves should have a rather large horizontal scale so that the outmost wave fronts can be seen at the distance of ~ 1000 km to the typhoon center in the horizontal plane of 20 kin. This is consistent with the phenomenon of stratospheric TC-GWs with 1000 km horizontal scale disclosed by the previous observational analysis results.展开更多
Because of the importance of gravity waves (GWs) in coupling different atmospheric regions, further studies are necessary to investigate the characteristics of GW propagation in a non-isothermal atmosphere. Using a ...Because of the importance of gravity waves (GWs) in coupling different atmospheric regions, further studies are necessary to investigate the characteristics of GW propagation in a non-isothermal atmosphere. Using a nonlinear numerical model, we simulate the propagation of small amplitude GWs with various wavelengths in different non-isothermal atmospheres. Our re- sults show that the GW vertical wavelength undergoes sharp changes above the stratopause and mesopause region. Specifically for a GW with an initial vertical wavelength of 5 km, the seasonal background temperature structure difference at 50° latitude can cause the vertical wavelength to vary by -2 krn in the mesosphere and by as large as -4.5 km in the lower thermosphere. In addition, the GW paths exhibit great divergence in the height range of -65-110 kin. Our results also show that the variations of GW path, vertical wavelength and horizontal phase velocity are not synchronized in a non-isothermal atmosphere as in an isothermal atmosphere. Despite the fact that all GWs change their characteristics as they propagate upward in a non-isothermal atmosphere, the variations relative to the initial parameters at a reference height are similar for different initial vertical wavelengths. Our results indicate that the changing characteristics of a gravity wave in a non-isothermal atmosphere need to be considered when investigating the relationship of GWs at two different heights.展开更多
As important yield-related traits,thousand-grain weight(TGW),grain number per spike(GNS)and grain weight per spike(GWS)are crucial components of wheat production.To dissect their underlying genetic basis,a double hapl...As important yield-related traits,thousand-grain weight(TGW),grain number per spike(GNS)and grain weight per spike(GWS)are crucial components of wheat production.To dissect their underlying genetic basis,a double haploid(DH)population comprised of 198 lines derived from 8762/Keyi 5214 was constructed.We then used genechip to genotype the DH population and integrated the yield-related traits TGW,GNS and GWS for QTL mapping.Finally,we obtained a total of 18942 polymorphic SNP markers and identified 41 crucial QTLs for these traits.Three stable QTLs for TGW were identified on chromosomes 2D(QTgw-2D.3 and QTgw-2D.4)and 6A(QTgw-6A.1),with additive alleles all from the parent 8762,explaining 4.81–18.67%of the phenotypic variations.Five stable QTLs for GNS on chromosomes 3D,5B,5D and 6A were identified.QGns-5D.1 was from parent 8762,while the other four QTLs were from parent Keyi 5214,explaining 5.89–7.08%of the GNS phenotypic variations.In addition,a stable GWS genetic locus QGws-4A.3 was detected from the parent 8762,which explained 6.08–6.14%of the phenotypic variations.To utilize the identified QTLs,we developed STARP markers for four important QTLs,Tgw2D.3-2,Tgw2D.4-1,Tgw6A.1 and Gns3D.1.Our results provide important basic resources and references for the identification and cloning of genes related to TGW,GNS and GWS in wheat.展开更多
For the first time,gravitational waves(GWs),a major prediction of Einstein’s 1915 general theory of relativity(GR),has been detected directly by the two detectors of the Laser Interferometer Gravitational-Wave Observ...For the first time,gravitational waves(GWs),a major prediction of Einstein’s 1915 general theory of relativity(GR),has been detected directly by the two detectors of the Laser Interferometer Gravitational-Wave Observatory(LIGO)[1,展开更多
In this article,we describe the results concerning the third coincident signal GW170104 from the coalescence of binary black holes(BBHs)during the second observation run(O2).The result was obtained from the LIGO S...In this article,we describe the results concerning the third coincident signal GW170104 from the coalescence of binary black holes(BBHs)during the second observation run(O2).The result was obtained from the LIGO Scientific Collaboration and the Virgo Collaboration.Following the first and second gravitational waves(GWs)detections in the first observation run(O1)[1],recently LIGO has observed a third coincident signal GW170104 from the coalescence of BBHs展开更多
This paper focuses on the relic gravity waves produced during the transition from a radiation-dominated inflationary phase to a dust-dominated Friedman-Robertson-Walker-type expansion. We discuss how to investigate th...This paper focuses on the relic gravity waves produced during the transition from a radiation-dominated inflationary phase to a dust-dominated Friedman-Robertson-Walker-type expansion. We discuss how to investigate the spectral energy density by the latest space-based CWs detectors at f =0.1 Hz (i.e. DECICO). In the case of power-law and exponential inflation, we apply the cross-correlation method to the latest detector and get the time dependence of the very early Hubble pararneter.展开更多
传统的基于专用短程通信(dedicated short range communication,DSRC)的车载网络(vehicular ad hoc network,VANET)通信架构难以满足车联网数据传输的服务质量(quality of service,QoS)需求,通过移动网关将数据上传至服务器,由服务器决...传统的基于专用短程通信(dedicated short range communication,DSRC)的车载网络(vehicular ad hoc network,VANET)通信架构难以满足车联网数据传输的服务质量(quality of service,QoS)需求,通过移动网关将数据上传至服务器,由服务器决策传输给目标车辆,可以扩大数据广播域,极大减少数据远程传输时延.结合移动云服务的思想,提出了一种新的车联网架构和数据传输方法.首先给出了网关服务者(gateway server,GWS)向云端注册服务信息的具体流程;其次提出了一种云端服务网关选取方法,该方法结合云端的历史数据和实时数据,动态决定参与服务的网关服务者及其服务范围,网关消费者(gateway consumer,GWC)在获取服务广播消息后,综合考虑通信负载、链路稳定度、信道质量等性能参数来选出最优的网关服务者,并将数据传输给网关服务者,再由其上传到云端;最后在OMNeT++实验环境下,针对不同的交通场景,对该方法传输性能进行了评估.结果表明该方法获得较低传输延迟的同时,能够保证较高的传输成功率,理论分析也证明了该方法的有效性.展开更多
基金supported by National Basic Research Program of China (Grant No.2010CB428603)National Natural Science Foundation of China (Grant No.40875017)Knowledge Innovation Program of the Chinese Academy of Sciences (Grant No.KZCX2-YW-123)
文摘The generation of stratospheric gravity waves (GWs) due to typhoon is simulated by using a meso-scale model (WRF) with a typhoon case, the Matsa in 2005. An 8-day model run that covers the major stages of the Matsa's development reproduces the key features of the typhoon. For example, good agreements in the typhoon's track, the intensity, and the spiral clouds, as well as mean state of stratosphere, are seen between the simulation results and the observation. Simulation results clearly show that with typhoon propagates northwestward, pronounced stratospheric GWs are generated continuously in the vicinity of Matsa. The GWs exhibit the typical curve-like wave fronts away from the Typhoon Matsa, and propagate preferentially in the up- stream of the background winds. These characteristics reflect that the stratospheric GWs are closely associated with the ty- phoon, and thus the GWs are referred to as Tropical Cyclone related Gravity Waves (TC-GWs). The results also show that these waves should have a rather large horizontal scale so that the outmost wave fronts can be seen at the distance of ~ 1000 km to the typhoon center in the horizontal plane of 20 kin. This is consistent with the phenomenon of stratospheric TC-GWs with 1000 km horizontal scale disclosed by the previous observational analysis results.
基金supported by the National Natural Science Foundation of China (Grant Nos. 40921063, 41004063, 41074109, 40890165, and 41174127)the National Important Basic Research Project (Grant No. 2011CB811405)+3 种基金the China Postdoctoral Science Foundation (Grant No. 20100470506)supported in part by the Specialized Research Fundthe Open Research Program of the State Key Laboratory of Space Weatherthe National Science Foundation of Unites States grant-ATM-0633418 to Miami University
文摘Because of the importance of gravity waves (GWs) in coupling different atmospheric regions, further studies are necessary to investigate the characteristics of GW propagation in a non-isothermal atmosphere. Using a nonlinear numerical model, we simulate the propagation of small amplitude GWs with various wavelengths in different non-isothermal atmospheres. Our re- sults show that the GW vertical wavelength undergoes sharp changes above the stratopause and mesopause region. Specifically for a GW with an initial vertical wavelength of 5 km, the seasonal background temperature structure difference at 50° latitude can cause the vertical wavelength to vary by -2 krn in the mesosphere and by as large as -4.5 km in the lower thermosphere. In addition, the GW paths exhibit great divergence in the height range of -65-110 kin. Our results also show that the variations of GW path, vertical wavelength and horizontal phase velocity are not synchronized in a non-isothermal atmosphere as in an isothermal atmosphere. Despite the fact that all GWs change their characteristics as they propagate upward in a non-isothermal atmosphere, the variations relative to the initial parameters at a reference height are similar for different initial vertical wavelengths. Our results indicate that the changing characteristics of a gravity wave in a non-isothermal atmosphere need to be considered when investigating the relationship of GWs at two different heights.
基金the Henan Modern Agricultural Industrial Technology System Construction,China(HARS-22-1-Z7)。
文摘As important yield-related traits,thousand-grain weight(TGW),grain number per spike(GNS)and grain weight per spike(GWS)are crucial components of wheat production.To dissect their underlying genetic basis,a double haploid(DH)population comprised of 198 lines derived from 8762/Keyi 5214 was constructed.We then used genechip to genotype the DH population and integrated the yield-related traits TGW,GNS and GWS for QTL mapping.Finally,we obtained a total of 18942 polymorphic SNP markers and identified 41 crucial QTLs for these traits.Three stable QTLs for TGW were identified on chromosomes 2D(QTgw-2D.3 and QTgw-2D.4)and 6A(QTgw-6A.1),with additive alleles all from the parent 8762,explaining 4.81–18.67%of the phenotypic variations.Five stable QTLs for GNS on chromosomes 3D,5B,5D and 6A were identified.QGns-5D.1 was from parent 8762,while the other four QTLs were from parent Keyi 5214,explaining 5.89–7.08%of the GNS phenotypic variations.In addition,a stable GWS genetic locus QGws-4A.3 was detected from the parent 8762,which explained 6.08–6.14%of the phenotypic variations.To utilize the identified QTLs,we developed STARP markers for four important QTLs,Tgw2D.3-2,Tgw2D.4-1,Tgw6A.1 and Gns3D.1.Our results provide important basic resources and references for the identification and cloning of genes related to TGW,GNS and GWS in wheat.
基金supported by the National Natural Science Foundation of China(Grant No.11303009)
文摘For the first time,gravitational waves(GWs),a major prediction of Einstein’s 1915 general theory of relativity(GR),has been detected directly by the two detectors of the Laser Interferometer Gravitational-Wave Observatory(LIGO)[1,
基金supported by the National Natural Science Foundation of China(Grant Nos.11673008,and 11205254)the Newton International Fellowship Alumni Follow on Funding,the Fundamental Research Funds for the Central Universities(Grant No.106112016CDJXY300002)Chinese State Scholarship Fund
文摘In this article,we describe the results concerning the third coincident signal GW170104 from the coalescence of binary black holes(BBHs)during the second observation run(O2).The result was obtained from the LIGO Scientific Collaboration and the Virgo Collaboration.Following the first and second gravitational waves(GWs)detections in the first observation run(O1)[1],recently LIGO has observed a third coincident signal GW170104 from the coalescence of BBHs
基金Supported by the National Basic Research Program of China under Grant No. 2003 CB 716300the National Natural Science Foundation of China under Grant No. 10575140+2 种基金CAEP Foundation under Grant No. 2008T0401 and 2008T0402Chongqing University Postgraduates Science and Innovation Fund, Project No. 200811B1A0100299Chinese State Scholarship Fund
文摘This paper focuses on the relic gravity waves produced during the transition from a radiation-dominated inflationary phase to a dust-dominated Friedman-Robertson-Walker-type expansion. We discuss how to investigate the spectral energy density by the latest space-based CWs detectors at f =0.1 Hz (i.e. DECICO). In the case of power-law and exponential inflation, we apply the cross-correlation method to the latest detector and get the time dependence of the very early Hubble pararneter.
文摘传统的基于专用短程通信(dedicated short range communication,DSRC)的车载网络(vehicular ad hoc network,VANET)通信架构难以满足车联网数据传输的服务质量(quality of service,QoS)需求,通过移动网关将数据上传至服务器,由服务器决策传输给目标车辆,可以扩大数据广播域,极大减少数据远程传输时延.结合移动云服务的思想,提出了一种新的车联网架构和数据传输方法.首先给出了网关服务者(gateway server,GWS)向云端注册服务信息的具体流程;其次提出了一种云端服务网关选取方法,该方法结合云端的历史数据和实时数据,动态决定参与服务的网关服务者及其服务范围,网关消费者(gateway consumer,GWC)在获取服务广播消息后,综合考虑通信负载、链路稳定度、信道质量等性能参数来选出最优的网关服务者,并将数据传输给网关服务者,再由其上传到云端;最后在OMNeT++实验环境下,针对不同的交通场景,对该方法传输性能进行了评估.结果表明该方法获得较低传输延迟的同时,能够保证较高的传输成功率,理论分析也证明了该方法的有效性.