The process of electron beam vacuum deposition of the Fe-(35-38 wt%)Ni alloys at substrate temperatures Ts from 300 to700 ℃ were used to produce vacuum-deposited foils with the FCC structure, differing by the size ...The process of electron beam vacuum deposition of the Fe-(35-38 wt%)Ni alloys at substrate temperatures Ts from 300 to700 ℃ were used to produce vacuum-deposited foils with the FCC structure, differing by the size of characteristic microstructural elements (grains and subgrains). It was shown that refinement of foil microstructural elements to nanoscale is accompanied by their microhardness increase up to 4-5 GPa. The change of the thermal expansion coefficient (TEC) of the nanostructured (NS) foil of the Fe-35.1Ni alloy within the temperature range from -50 to 150 ℃ has some deviation from that observed for cast Invar alloy of the same composition. It has been found that the main factors affecting the peculiarities of thermal expansion of the NS foil can be related to the presence of small fraction of BCC- phase in them, high level of crystalline lattice microstrains and inhomogeneous magnetic order in FCC- phase. It was shown that as a result of additional thermal treatment of NS foils their invar properties become similar to that observed for cast Invar alloy but mechanical properties remain on the same level.展开更多
This paper briefly introduces the characteristics of electron beam physical vapor depo-sition (EBPVD) technique and the whole process of preparing micro--layer compositelaminate. And several major influencing factors ...This paper briefly introduces the characteristics of electron beam physical vapor depo-sition (EBPVD) technique and the whole process of preparing micro--layer compositelaminate. And several major influencing factors are presented and discussed. It wasfound that residual gas pressure should be low enough to guarantee the unobstructedtransporfation of vapor steam and electron beam; the evaporation method and evapo-ration speed are up to the different vapor pressure deficit of compositions of raw mate-rials; and the substrate temperature could have great influence on the microstructureof the micro--layer laminates.展开更多
Based on the basic operating principal and the technology characteristic of electron beam physical vapor deposition(EBPVD) technique, EBPVD was used to prepare the micro-layer composites. The effect on the substrate p...Based on the basic operating principal and the technology characteristic of electron beam physical vapor deposition(EBPVD) technique, EBPVD was used to prepare the micro-layer composites. The effect on the substrate preheating temperature was taken into accounts and the finite element analysis package ANSYS was used to simulate the internal stress field and the potential displacement changing tendency. The results show that one of the most important quality factors on the judgment of micro-layer composites is the adhesion between the substrate and the deposition layers as well as among the different deposition layers. Besides the existance of temperature gradient through the thickness of layers, the main reason for the internal stress in micro-layer composites is the mismatch of various properties of the layer and the substrate of different thermal expansions and crystal lattice types. With the increase of substrate preheating temperature, the inter-laminar shear stress also takes on a tendency of increase but the axial residual stress decrease.展开更多
The preparation technology of microlayer composite material by the electron beam physical vapor deposition (EBPVD) technique was briefly introduced. Taking the advantage of the large-scale commercial softvare of finit...The preparation technology of microlayer composite material by the electron beam physical vapor deposition (EBPVD) technique was briefly introduced. Taking the advantage of the large-scale commercial softvare of finite element analysis, areasonable physical model was built up during the deposition processing and the distribution of residual stress was analyzedbetween substrate and deposition layer or among deposition layers. The results show that: with the increasing substrate preheating temperature, the interlaminar shear stress increases but the axial residual stress decreases. The probability of curlingup after de-bonding tends to enhance as the thickness of deposition film increases.展开更多
基金the financing support of the budget(022/11-B)of the G.V.Kurdyumov Institute for Metal Physics of NAS of Ukrainethe budget(1.6.3.13/33) of the E.O.Paton Electric Welding Institute of NAS of Ukraine
文摘The process of electron beam vacuum deposition of the Fe-(35-38 wt%)Ni alloys at substrate temperatures Ts from 300 to700 ℃ were used to produce vacuum-deposited foils with the FCC structure, differing by the size of characteristic microstructural elements (grains and subgrains). It was shown that refinement of foil microstructural elements to nanoscale is accompanied by their microhardness increase up to 4-5 GPa. The change of the thermal expansion coefficient (TEC) of the nanostructured (NS) foil of the Fe-35.1Ni alloy within the temperature range from -50 to 150 ℃ has some deviation from that observed for cast Invar alloy of the same composition. It has been found that the main factors affecting the peculiarities of thermal expansion of the NS foil can be related to the presence of small fraction of BCC- phase in them, high level of crystalline lattice microstrains and inhomogeneous magnetic order in FCC- phase. It was shown that as a result of additional thermal treatment of NS foils their invar properties become similar to that observed for cast Invar alloy but mechanical properties remain on the same level.
基金This work was supported by the Natural Science Foundation of Heilongjiang Province(No.E01-07)Postdoctoral Science Foundation of China(No.LB0047).
文摘This paper briefly introduces the characteristics of electron beam physical vapor depo-sition (EBPVD) technique and the whole process of preparing micro--layer compositelaminate. And several major influencing factors are presented and discussed. It wasfound that residual gas pressure should be low enough to guarantee the unobstructedtransporfation of vapor steam and electron beam; the evaporation method and evapo-ration speed are up to the different vapor pressure deficit of compositions of raw mate-rials; and the substrate temperature could have great influence on the microstructureof the micro--layer laminates.
基金Project(50304007) supported by the National Natural Science Foundation of China
文摘Based on the basic operating principal and the technology characteristic of electron beam physical vapor deposition(EBPVD) technique, EBPVD was used to prepare the micro-layer composites. The effect on the substrate preheating temperature was taken into accounts and the finite element analysis package ANSYS was used to simulate the internal stress field and the potential displacement changing tendency. The results show that one of the most important quality factors on the judgment of micro-layer composites is the adhesion between the substrate and the deposition layers as well as among the different deposition layers. Besides the existance of temperature gradient through the thickness of layers, the main reason for the internal stress in micro-layer composites is the mismatch of various properties of the layer and the substrate of different thermal expansions and crystal lattice types. With the increase of substrate preheating temperature, the inter-laminar shear stress also takes on a tendency of increase but the axial residual stress decrease.
基金This work was supported by the Natural Science Foundation of Hei Longjiang Province (E01-07) and China Postdoctoral Science Foundation that support this research (LB0047).
文摘The preparation technology of microlayer composite material by the electron beam physical vapor deposition (EBPVD) technique was briefly introduced. Taking the advantage of the large-scale commercial softvare of finite element analysis, areasonable physical model was built up during the deposition processing and the distribution of residual stress was analyzedbetween substrate and deposition layer or among deposition layers. The results show that: with the increasing substrate preheating temperature, the interlaminar shear stress increases but the axial residual stress decreases. The probability of curlingup after de-bonding tends to enhance as the thickness of deposition film increases.