风速波动具有随机性和不确定性,导致风速预测的准确度不高。准确的风速预测对于优化风电运行策略和提高发电效率具有重大意义。利用最大信息系数(Maximal Information Coefficient,MIC)对风机SCADA数据进行变量相关性分析,并以MIC值大...风速波动具有随机性和不确定性,导致风速预测的准确度不高。准确的风速预测对于优化风电运行策略和提高发电效率具有重大意义。利用最大信息系数(Maximal Information Coefficient,MIC)对风机SCADA数据进行变量相关性分析,并以MIC值大小对原始变量排序,将包含7项变量的子集作为深度信念网络(Deep Belief Network,DBN)输入,得到MIC-DBN风速预测模型。基于风场实际数据将MIC-DBN模型与BP神经网络模型和GA-BP模型进行测试对比,实验结果表明,MIC-DBN风速预测模型的预测精度和泛化性能具有良好的效果。展开更多
文摘风速波动具有随机性和不确定性,导致风速预测的准确度不高。准确的风速预测对于优化风电运行策略和提高发电效率具有重大意义。利用最大信息系数(Maximal Information Coefficient,MIC)对风机SCADA数据进行变量相关性分析,并以MIC值大小对原始变量排序,将包含7项变量的子集作为深度信念网络(Deep Belief Network,DBN)输入,得到MIC-DBN风速预测模型。基于风场实际数据将MIC-DBN模型与BP神经网络模型和GA-BP模型进行测试对比,实验结果表明,MIC-DBN风速预测模型的预测精度和泛化性能具有良好的效果。