期刊导航
期刊开放获取
cqvip
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于频域ICA的语音特征增强
1
作者
吕钊
吴小培
李密
《振动与冲击》
EI
CSCD
北大核心
2011年第2期238-242,257,共6页
为了降低卷积噪声对语音特征所产生的影响,提高语音识别正确率,在此提出了一种基于频域ICA(Independent Component Analysis,独立分量分析)的语音特征增强算法。该算法首先使用频域ICA方法作对噪声进行估计,然后在倒谱域内将带噪语音信...
为了降低卷积噪声对语音特征所产生的影响,提高语音识别正确率,在此提出了一种基于频域ICA(Independent Component Analysis,独立分量分析)的语音特征增强算法。该算法首先使用频域ICA方法作对噪声进行估计,然后在倒谱域内将带噪语音信号的短时谱减去所估计噪声的短时谱,最后根据去噪后语音信号的短时谱计算美尔倒谱系数(MFCC)作为特征参数。在仿真和真实环境下的语音识别实验中,所提出的语音特征参数相比较传统的MFCC其识别正确率分别提升了38.2%和35.8%。实验结果表明该算法能够较好地解决卷积噪声环境下训练与识别特征不匹配的问题,有效提高了语音识别系统的识别正确率。
展开更多
关键词
频域
ica
语音
特征增强
美尔倒谱系数(MFCC)
下载PDF
职称材料
题名
基于频域ICA的语音特征增强
1
作者
吕钊
吴小培
李密
机构
安徽大学计算智能与信号处理教育部重点实验室
空军第一航空学院航空电子工程系
出处
《振动与冲击》
EI
CSCD
北大核心
2011年第2期238-242,257,共6页
基金
国家自然科学基金资助项目(60771033)
博士点基金(200803570002)
文摘
为了降低卷积噪声对语音特征所产生的影响,提高语音识别正确率,在此提出了一种基于频域ICA(Independent Component Analysis,独立分量分析)的语音特征增强算法。该算法首先使用频域ICA方法作对噪声进行估计,然后在倒谱域内将带噪语音信号的短时谱减去所估计噪声的短时谱,最后根据去噪后语音信号的短时谱计算美尔倒谱系数(MFCC)作为特征参数。在仿真和真实环境下的语音识别实验中,所提出的语音特征参数相比较传统的MFCC其识别正确率分别提升了38.2%和35.8%。实验结果表明该算法能够较好地解决卷积噪声环境下训练与识别特征不匹配的问题,有效提高了语音识别系统的识别正确率。
关键词
频域
ica
语音
特征增强
美尔倒谱系数(MFCC)
Keywords
frequency-domain independent component analysis(
ica
)
speech
feature enhancement
Mel-frequency cepstral coefficient(MFCC)
分类号
TN912.34 [电子电信—通信与信息系统]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于频域ICA的语音特征增强
吕钊
吴小培
李密
《振动与冲击》
EI
CSCD
北大核心
2011
0
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部