期刊文献+

基于频域ICA的语音特征增强

Speech feature enhancement based on frequency-domain ICA
下载PDF
导出
摘要 为了降低卷积噪声对语音特征所产生的影响,提高语音识别正确率,在此提出了一种基于频域ICA(Independent Component Analysis,独立分量分析)的语音特征增强算法。该算法首先使用频域ICA方法作对噪声进行估计,然后在倒谱域内将带噪语音信号的短时谱减去所估计噪声的短时谱,最后根据去噪后语音信号的短时谱计算美尔倒谱系数(MFCC)作为特征参数。在仿真和真实环境下的语音识别实验中,所提出的语音特征参数相比较传统的MFCC其识别正确率分别提升了38.2%和35.8%。实验结果表明该算法能够较好地解决卷积噪声环境下训练与识别特征不匹配的问题,有效提高了语音识别系统的识别正确率。 To suppress the interference of convolutive noise on speech features and improve the rate of speech recognition,a speech feature enhancement algorithm based on frequency-domain ICA(independent component analysis) was presented here.In the proposed algorithm,noise short-time spectrum was estimated using the frequency-domain ICA algorithm,and then noise reduction was achieved by subtracting the estimated noise short-time spectrum from a noisy speech short-time spectrum to be enhanced in the Mel-scale filter bank domain.As a result,the robust MFCC(Mel-frequency cepstral coefficients) were acquired.Simulation and real environment test results revealed that their recognition raties with the proposed algorithm increase about 38.2% and 35.8% respactively compared with that of the conventional MFCC;the mismatch between training features and identifing ones in convolutive noise environment can be suppressed effectively with the proposed algorithm.
出处 《振动与冲击》 EI CSCD 北大核心 2011年第2期238-242,257,共6页 Journal of Vibration and Shock
基金 国家自然科学基金资助项目(60771033) 博士点基金(200803570002)
关键词 频域ICA 语音 特征增强 美尔倒谱系数(MFCC) frequency-domain independent component analysis(ICA) speech feature enhancement Mel-frequency cepstral coefficient(MFCC)
  • 相关文献

参考文献17

  • 1Takahashi Y,Takatani T,Osako K,et al.Blind Spatial Subtraction Array for Speech Enhancement in Noisy Environment[J].IEEE transactions on audio,speech,and language processing,2009,17(4):650-664. 被引量:1
  • 2Potamitis L,Fakotakis N,Kokkinakis G.Independent component analysis applied to feature extraction for robust automatic speech recognition[J].Electronics letters,9th November,2000,36(23):1977-1978. 被引量:1
  • 3Chien J T,Chen B C.A new independent component analysis for speech recognition and separation[J].IEEE transactions on audio,speech and language processing,2006,14 (4):1245-1253. 被引量:1
  • 4Asano F,Ikeda S,Ogawa M,et al.Combined Approach of Array Processing and Independent Component Analysis for Blind Separation of Acoustic Signals[J].IEEE Transactions on Speech and Audio Processing.2003,11 (3):204-215. 被引量:1
  • 5杨福生,洪波著..独立分量分析的原理与应用[M].北京:清华大学出版社,2006:205.
  • 6彭煊,刘金福,王炳锡.基于独立分量分析的语音增强[J].信号处理,2002,18(5):477-479. 被引量:14
  • 7陈健,陆佶人.噪声背景下双输入时延混合系统的盲源分离[J].声学学报,2002,27(5):477-480. 被引量:7
  • 8徐舜,陈绍荣,刘郁林.卷积混合语音的联合块对角化盲源分离算法[J].振动与冲击,2007,26(8):86-90. 被引量:3
  • 9Bingham E,Hyvarinen A.A fast fixed-point algorithm for independent component analysis of complex valued signals[J].Int.J.Neural Systems,2000,10:1-8. 被引量:1
  • 10Smaragdis P.Blind separation of convolved mixtures in the frequency domain[J],Neurocomput.,1998,22:21-34. 被引量:1

二级参考文献25

共引文献40

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部