期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
民航突发事件领域本体关系提取方法的研究 被引量:7
1
作者 王红 李晗 李浩飞 《计算机科学与探索》 CSCD 北大核心 2020年第2期285-293,共9页
针对民航突发事件领域本体关系抽取准确率低的问题,提出了一种结合注意力机制与双向门控循环单元(BiGRU)的关系抽取模型。首先查询预先训练的词向量矩阵,将文本中每个词语映射为向量表示;其次构建BiGRU,得到词语序列的上下文语义信息;... 针对民航突发事件领域本体关系抽取准确率低的问题,提出了一种结合注意力机制与双向门控循环单元(BiGRU)的关系抽取模型。首先查询预先训练的词向量矩阵,将文本中每个词语映射为向量表示;其次构建BiGRU,得到词语序列的上下文语义信息;然后在词语层面和句子层面分别引入注意力机制,为表达语义关系更重要的词语和句子分配更大的权重;最后进行模型的训练与优化。将该模型应用在民航突发事件领域本体的关系提取中,实验结果表明该模型相较于其他方法具有更好的提取效果,验证了该模型的有效性,为民航突发事件领域本体关系的自动获取提供了新的方法支持。 展开更多
关键词 关系抽取 民航突发事件 注意力机制 门控循环单元(gru)模型 领域本体
下载PDF
基于S2S-CNN-GRU的机场离港航班延误预测
2
作者 李善梅 周相志 《中国安全科学学报》 CAS CSCD 北大核心 2023年第8期93-100,共8页
为解决空中交通管理中机场离港航班延误预测难题,采用序列到序列(S2S)框架将门控单元循环网络(GRU)和卷积神经网络(CNN)相结合,提出一种基于S2S-CNN-GRU的航班延误预测模型,主要采用序列到序列的框架结构,利用CNN来捕获机场航班延误状... 为解决空中交通管理中机场离港航班延误预测难题,采用序列到序列(S2S)框架将门控单元循环网络(GRU)和卷积神经网络(CNN)相结合,提出一种基于S2S-CNN-GRU的航班延误预测模型,主要采用序列到序列的框架结构,利用CNN来捕获机场航班延误状态的结构化特征,作为编码器的输入,利用GRU捕获延误状态的时间特征,并作为解码器输出预测结果,提高预测的准确性。采用美国实际数据检验该模型的有效性,并同其他模型进行对比。结果表明:基于S2S-CNN-GRU的航班延误预测模型预测的平均绝对误差(MAE)为3.03,均方根误差(RMSE)为5.82,明显优于其他模型的预测效果。 展开更多
关键词 序列到序列(S2S)-卷积神经网络(CNN)-门控循环单元(gru)模型 离港航班 延误预测 神经网络 特征提取
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部