期刊文献+

民航突发事件领域本体关系提取方法的研究 被引量:7

Research of Relation Extraction Method of Civil Aviation Emergency Domain Ontology
下载PDF
导出
摘要 针对民航突发事件领域本体关系抽取准确率低的问题,提出了一种结合注意力机制与双向门控循环单元(BiGRU)的关系抽取模型。首先查询预先训练的词向量矩阵,将文本中每个词语映射为向量表示;其次构建BiGRU,得到词语序列的上下文语义信息;然后在词语层面和句子层面分别引入注意力机制,为表达语义关系更重要的词语和句子分配更大的权重;最后进行模型的训练与优化。将该模型应用在民航突发事件领域本体的关系提取中,实验结果表明该模型相较于其他方法具有更好的提取效果,验证了该模型的有效性,为民航突发事件领域本体关系的自动获取提供了新的方法支持。 To address the problem that the current accuracy of relation extraction of civil aviation emergency domain ontology is low,this paper proposes a relation extraction model based on attention mechanism and bidirectional gated recurrent unit(BiGRU).Firstly,this paper queries the pre-trained word vector matrix and maps text words into vectors.Secondly,BiGRU is constructed to obtain the context semantic information of word sequence.Thirdly,attention mechanism is introduced at word level and sentence level repectively to allocate more weights to words and sentences that are more important for semantic representation.Finally,the model is trained and optimized.Experiments are conducted on the relation extraction of civil aviation emergency domain ontology,and the results show that this model has better accuracy of the relation extraction compared with traditional methods,which verifies the validity of the model and provides new method support for the automatic learning of relation extraction of civil aviation emergency domain ontology.
作者 王红 李晗 李浩飞 WANG Hong;LI Han;LI Haofei(School of Computer Science and Technology,Civil Aviation University of China,Tianjin 300300,China)
出处 《计算机科学与探索》 CSCD 北大核心 2020年第2期285-293,共9页 Journal of Frontiers of Computer Science and Technology
基金 国家自然科学基金No.U1633110~~
关键词 关系抽取 民航突发事件 注意力机制 门控循环单元(GRU)模型 领域本体 relation extraction civil aviation emergency attention mechanism gated recurrent unit(GRU)model domain ontology
  • 相关文献

参考文献3

二级参考文献12

共引文献80

同被引文献27

引证文献7

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部