The anodic behaviour of pre-oxidised and non-oxidised Cu-Al-based anodes(Cu-10Al and Cu-9.8Al-2Mn)in KF-AlF_(3)-Al_(2)O_(3)melts was studied through galvanostatic and potentiodynamic polarization techniques.The alloy ...The anodic behaviour of pre-oxidised and non-oxidised Cu-Al-based anodes(Cu-10Al and Cu-9.8Al-2Mn)in KF-AlF_(3)-Al_(2)O_(3)melts was studied through galvanostatic and potentiodynamic polarization techniques.The alloy compositions were oxidised for a short-term(8 h)at 700℃,followed by galvanostatic polarization for 1 h at 800℃with an applied current density of 0.4 A/cm^(2).The potentiodynamic curves were recorded with a sweep rate of 0.01 V/s.XRD analysis was conducted on frozen melt samples collected on the surface of the anode,and SEM observation was performed on the anode after the experiment to study the phases of the scales formed on the alloys.All the anode materials had a steady potential between 2.30 and 2.50 V(vs Al/AlF_(3)).The corrosion rates of the anodes were calculated from the data acquired through potentiodynamic polarization.It was seen that pre-oxidised anodes possess a low corrosion rate compared to those without pre-oxidation treatment.展开更多
中子探测技术广泛用于国土安全、核材料安全检测以及高能物理等领域,由于3He资源紧缺,近年来急需开发出能够同时甄别中子/伽马的新型闪烁晶体,Cs_(2)LaLiBr_(6):Ce(CLLB:Ce)晶体具有良好的中子/伽马甄别能力、优异的能量分辨率以及高的...中子探测技术广泛用于国土安全、核材料安全检测以及高能物理等领域,由于3He资源紧缺,近年来急需开发出能够同时甄别中子/伽马的新型闪烁晶体,Cs_(2)LaLiBr_(6):Ce(CLLB:Ce)晶体具有良好的中子/伽马甄别能力、优异的能量分辨率以及高的光输出,但其中子/伽马甄别性能有待进一步提高。本研究采用垂直布里奇曼法成功生长了Zr^(4+)共掺杂的CLLB:Ce晶体。通过不同表征手段研究了Zr^(4+)共掺杂CLLB:Ce晶体的结构和组分,结果表明Zr^(4+)成功掺入基质材料且对基质晶体结构不产生明显的影响,Zr^(4+)共掺杂后没有产生新的发光中心,紫外衰减时间约为27.0 ns,仍具有较快的荧光衰减。Zr^(4+)共掺杂CLLB:Ce晶体的品质因子(Figure of Merit,FOM)从1.2提高到1.5,表明其中子/伽马甄别能力得到改善。结合热稳定性和闪烁衰减时间,探讨了衰减时间对FOM的影响机制,Zr^(4+)共掺杂可以抑制浅电子陷阱和Vk中心,减少电子捕获和脱陷过程,使Ce^(3+)直接捕获的概率大大增加,从而表现出更快的衰减速率。本研究显示,Zr^(4+)共掺杂CLLB:Ce晶体在中子/伽马探测领域具有潜在的应用前景。展开更多
文摘The anodic behaviour of pre-oxidised and non-oxidised Cu-Al-based anodes(Cu-10Al and Cu-9.8Al-2Mn)in KF-AlF_(3)-Al_(2)O_(3)melts was studied through galvanostatic and potentiodynamic polarization techniques.The alloy compositions were oxidised for a short-term(8 h)at 700℃,followed by galvanostatic polarization for 1 h at 800℃with an applied current density of 0.4 A/cm^(2).The potentiodynamic curves were recorded with a sweep rate of 0.01 V/s.XRD analysis was conducted on frozen melt samples collected on the surface of the anode,and SEM observation was performed on the anode after the experiment to study the phases of the scales formed on the alloys.All the anode materials had a steady potential between 2.30 and 2.50 V(vs Al/AlF_(3)).The corrosion rates of the anodes were calculated from the data acquired through potentiodynamic polarization.It was seen that pre-oxidised anodes possess a low corrosion rate compared to those without pre-oxidation treatment.
文摘中子探测技术广泛用于国土安全、核材料安全检测以及高能物理等领域,由于3He资源紧缺,近年来急需开发出能够同时甄别中子/伽马的新型闪烁晶体,Cs_(2)LaLiBr_(6):Ce(CLLB:Ce)晶体具有良好的中子/伽马甄别能力、优异的能量分辨率以及高的光输出,但其中子/伽马甄别性能有待进一步提高。本研究采用垂直布里奇曼法成功生长了Zr^(4+)共掺杂的CLLB:Ce晶体。通过不同表征手段研究了Zr^(4+)共掺杂CLLB:Ce晶体的结构和组分,结果表明Zr^(4+)成功掺入基质材料且对基质晶体结构不产生明显的影响,Zr^(4+)共掺杂后没有产生新的发光中心,紫外衰减时间约为27.0 ns,仍具有较快的荧光衰减。Zr^(4+)共掺杂CLLB:Ce晶体的品质因子(Figure of Merit,FOM)从1.2提高到1.5,表明其中子/伽马甄别能力得到改善。结合热稳定性和闪烁衰减时间,探讨了衰减时间对FOM的影响机制,Zr^(4+)共掺杂可以抑制浅电子陷阱和Vk中心,减少电子捕获和脱陷过程,使Ce^(3+)直接捕获的概率大大增加,从而表现出更快的衰减速率。本研究显示,Zr^(4+)共掺杂CLLB:Ce晶体在中子/伽马探测领域具有潜在的应用前景。