针对多UUT(Unit Under Test)并行测试任务调度与资源配置问题,提出了一种遗传蚁群融合算法.应用遗传蚁群融合算法能快速、准确地寻找到具有最大成本效率的多UUT并行测试资源配置和任务序列.建立了多UUT并行测试任务资源描述的数学模型,...针对多UUT(Unit Under Test)并行测试任务调度与资源配置问题,提出了一种遗传蚁群融合算法.应用遗传蚁群融合算法能快速、准确地寻找到具有最大成本效率的多UUT并行测试资源配置和任务序列.建立了多UUT并行测试任务资源描述的数学模型,分析了多UUT测控资源合并的条件,得出最短并行测试时间基础上的最少资源需求,给出了成本效率的定义,设计了一种满足多UUT并行测试任务调度的基因编码方法和路径选择方案.算法初期利用遗传算法的快速收敛性,为蚁群算法提供初始信息素分布,蚁群算法采用双向收敛的信息素反馈方式,避免了对参数的依赖,减少了局部收敛性,加快了收敛速度.实例表明,该算法能很好地解决多UUT任务资源最优调度与配置问题.展开更多
针对多部干扰机协同干扰多部雷达的干扰资源分配问题,提出一种基于遗传-蚁群融合算法的干扰资源分配算法。首先采用综合集成赋权法结合逼近理想解排序法(technique for order preference by similarity to an ideal solution,TOPSIS)对...针对多部干扰机协同干扰多部雷达的干扰资源分配问题,提出一种基于遗传-蚁群融合算法的干扰资源分配算法。首先采用综合集成赋权法结合逼近理想解排序法(technique for order preference by similarity to an ideal solution,TOPSIS)对目标雷达进行威胁评估,然后建立干扰资源多约束优化分配模型,最后采用遗传-蚁群融合算法对模型进行求解。融合算法利用遗传算法快速寻找出若干组优化解,将这些优化解用于调整蚁群算法中初始信息素的分布,利用蚁群算法对问题进一步优化,从而找到最优解,提升了算法的求解精度和求解时间。仿真结果表明,融合算法的性能在收敛速度和寻优准确性等方面相较于其他算法都有了较大提升。展开更多
文摘针对多UUT(Unit Under Test)并行测试任务调度与资源配置问题,提出了一种遗传蚁群融合算法.应用遗传蚁群融合算法能快速、准确地寻找到具有最大成本效率的多UUT并行测试资源配置和任务序列.建立了多UUT并行测试任务资源描述的数学模型,分析了多UUT测控资源合并的条件,得出最短并行测试时间基础上的最少资源需求,给出了成本效率的定义,设计了一种满足多UUT并行测试任务调度的基因编码方法和路径选择方案.算法初期利用遗传算法的快速收敛性,为蚁群算法提供初始信息素分布,蚁群算法采用双向收敛的信息素反馈方式,避免了对参数的依赖,减少了局部收敛性,加快了收敛速度.实例表明,该算法能很好地解决多UUT任务资源最优调度与配置问题.
文摘针对多部干扰机协同干扰多部雷达的干扰资源分配问题,提出一种基于遗传-蚁群融合算法的干扰资源分配算法。首先采用综合集成赋权法结合逼近理想解排序法(technique for order preference by similarity to an ideal solution,TOPSIS)对目标雷达进行威胁评估,然后建立干扰资源多约束优化分配模型,最后采用遗传-蚁群融合算法对模型进行求解。融合算法利用遗传算法快速寻找出若干组优化解,将这些优化解用于调整蚁群算法中初始信息素的分布,利用蚁群算法对问题进一步优化,从而找到最优解,提升了算法的求解精度和求解时间。仿真结果表明,融合算法的性能在收敛速度和寻优准确性等方面相较于其他算法都有了较大提升。