期刊文献+

基于遗传蚁群算法的并行测试任务调度与资源配置 被引量:4

Parallel Test Tasks Scheduling and Resources Configuration Based on GA-ACA
下载PDF
导出
摘要 针对多UUT(Unit Under Test)并行测试任务调度与资源配置问题,提出了一种遗传蚁群融合算法.应用遗传蚁群融合算法能快速、准确地寻找到具有最大成本效率的多UUT并行测试资源配置和任务序列.建立了多UUT并行测试任务资源描述的数学模型,分析了多UUT测控资源合并的条件,得出最短并行测试时间基础上的最少资源需求,给出了成本效率的定义,设计了一种满足多UUT并行测试任务调度的基因编码方法和路径选择方案.算法初期利用遗传算法的快速收敛性,为蚁群算法提供初始信息素分布,蚁群算法采用双向收敛的信息素反馈方式,避免了对参数的依赖,减少了局部收敛性,加快了收敛速度.实例表明,该算法能很好地解决多UUT任务资源最优调度与配置问题. A genetic ant colony algorithm (GA-ACA), which can be used to find the optimized multi- UUT parallel test tasks array and resources configuration quickly and accurately, is proposed. The mathematic model of multi-UUT parallel test tasks and resources was established. The condition of multi-UUT resources combination was analyzed to get minimum resource requirement under minimum test time. The definition of cost efficiency was put which could satisfy multi-UUT parallel test tasks forward. A gene coding and path choosing project scheduling was designed. At the beginning of the algorithm, GA was adopted to provide initialization pheromone for ACO algorithm. To avoid local convergence and parameters dependence, the ACA adopted the dual-convergence pheromone feedback mode. The practice application shows that the algorithm can solve multi-UUT parallel test tasks scheduling and resources configuration problems effectively.
出处 《测试技术学报》 2009年第4期343-349,共7页 Journal of Test and Measurement Technology
基金 总装"十一五"重点预研基金资助项目(51317030103)
关键词 并行测试 遗传蚁群融合算法 成本效率 多UUT 资源配置 任务调度 parallel test genetic ant colony algorithm (GA-ACA) cost effieieney multi-Unit Under Test (UUT) resource configuration task scheduling
  • 相关文献

参考文献6

二级参考文献42

共引文献214

同被引文献35

  • 1肖明清,朱小平,夏锐.并行测试技术综述[J].空军工程大学学报(自然科学版),2005,6(3):22-25. 被引量:56
  • 2陈粤,边泽强,孟晓风.基于信号参数集最小距离的并行测试任务调度算法[J].系统仿真学报,2006,18(9):2409-2411. 被引量:17
  • 3周德新,祁鹏,刘涛.机载REU并行测试系统资源配置优化算法研究[C]//中国智能自动化会议论文集.2009:252-257. 被引量:1
  • 4Yu Lian, Tsai W-T, et al. Testing as a Service over Cloud [C]// IEEE International Symposium on Service Oriented System En gineering. 2010: 181-188. 被引量:1
  • 5Akerele O, Ramachandran M, Dixon M. Testing in the Cloud: Strategies, Risks and Benefits [M] // Software Engineering Frameworks for the Cloud Computing Paradigm. 2013=167. 被引量:1
  • 6Banzai T,Koizumi H,Kanbayashi R. Design of a Software Tes- ting Environment for Reliable Distributed System Using Cloud Computing Teehnology[C2//International Conference on Clus- ter, Cloud and Grid Computing. 2010 : 631-636. 被引量:1
  • 7Greenberg A, Hanilton J R, Jain N. VL2.-A Scalable and Flexi- ble Data Center Network [C]//Proceedings of the ACM SIG-COMM 2009 conference on Data communication. 2009:51-62. 被引量:1
  • 8Garg S K, Ya R B. Network CloudSim.-Modelling Parallel Appli- cation in Cloud Simulations [C] // Fourth IEEE International Conference on Utility and Cloud Computing. 2011:105-113. 被引量:1
  • 9Buyya R,Ranjan R, Calheiros R N. Modeling and simulation of scalable Cloud computing environments and the CloudSim tool- kit : Challenges and opportunities[C]//International Conference on High Performance Computing & Simulation. 2009: 1-11. 被引量:1
  • 10MYERS G J, BADGETT T, SANDLER C. The art of software testing[M]. 3rd ed. Wiley, 2012: 24-29. 被引量:1

引证文献4

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部