期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
InSAR通道联合稀疏贝叶斯特征化成像
1
作者 侯育星 徐刚 《雷达学报(中英文)》 CSCD 北大核心 2018年第6期750-757,共8页
针对干涉合成孔径雷达(InSAR)成像,该文提出了一种通道联合结构化稀疏的贝叶斯成像算法,可实现图像稀疏特征化增强,以提升干涉相位噪声滤波和相干斑抑制性能。基于贝叶斯准则,利用多层级统计模型建立稀疏成像模型,结构化稀疏表示InSAR... 针对干涉合成孔径雷达(InSAR)成像,该文提出了一种通道联合结构化稀疏的贝叶斯成像算法,可实现图像稀疏特征化增强,以提升干涉相位噪声滤波和相干斑抑制性能。基于贝叶斯准则,利用多层级统计模型建立稀疏成像模型,结构化稀疏表示InSAR图像。在稀疏成像求解中,利用最大期望(EM)算法进行图像重构和多层级统计参数估计。由于能够联合利用通道稀疏统计特性,所提算法能够有效提升InSAR幅度和相位噪声滤波性能。最后,通过实验分析进一步验证该文算法的有效性。 展开更多
关键词 干涉合成孔径雷达 通道联合稀疏 贝叶斯 干涉相位滤波 相干斑抑制
下载PDF
基于互信息的多通道联合稀疏模型及其组织病理图像分类 被引量:4
2
作者 汤红忠 李骁 +1 位作者 张小刚 张东波 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2018年第8期1514-1521,共8页
针对传统联合稀疏模型中共有分量与独有分量都采用相同的字典进行特征表示,导致编码系数判别性低的问题,提出一种基于互信息的多通道联合稀疏模型,并将其应用于组织病理图像的分类.该模型通过K均值对样本特征进行聚类,分别得到R,G与B通... 针对传统联合稀疏模型中共有分量与独有分量都采用相同的字典进行特征表示,导致编码系数判别性低的问题,提出一种基于互信息的多通道联合稀疏模型,并将其应用于组织病理图像的分类.该模型通过K均值对样本特征进行聚类,分别得到R,G与B通道的字典;其次利用样本特征与3个字典之间的互信息,剔除弱相关原子且构造了1个共有字典与3个独有字典,以此为基础建立了多通道联合稀疏模型;同时引入图像的空间信息,结合空间金字塔匹配模型对不同层次的图像特征进行联合稀疏编码,利用编码系数训练SVM分类器.实验结果表明,该模型具有更好的特征表示能力,大大提高了编码系数的判别性,获得了较好的分类性能与较强的鲁棒性. 展开更多
关键词 互信息 通道联合稀疏模型 空间金字塔匹配 组织病理图像分类
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部