期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
一类通矢量分裂方法的保正性研究Ⅰ.显式格式 被引量:3
1
作者 汤华中 徐昆 《计算数学》 CSCD 北大核心 2001年第4期469-476,共8页
This paper is about the positivity analysis of a class of flux-vector splitting (FVS) methods for the compressible Euler equations, which include gas-kinetic Beam scheme[8], Steger-Warming FVS method[9], and Lax-Fried... This paper is about the positivity analysis of a class of flux-vector splitting (FVS) methods for the compressible Euler equations, which include gas-kinetic Beam scheme[8], Steger-Warming FVS method[9], and Lax-Friedrichs scheme. It shows that the density and the internal energy could keep non-negative values under the CFL condition for all above three schemes once the initial gas stays in a physically realizable state. The proof of positivity is closely related to the pseudo-particle representation of FVS schemes. 展开更多
关键词 EULER方程 保正性 矢量分裂 Beam格式 Lax-Friedrichs格式 矢量方法 流体力学 数值方法
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部