期刊文献+

一类通矢量分裂方法的保正性研究Ⅰ.显式格式 被引量:3

ON POSITIVITY OF A CLASS OF FLUX-VECTOR SPLITTING METHODS I. EXPLICIT DIFFERENCE SCHEMES
原文传递
导出
摘要 This paper is about the positivity analysis of a class of flux-vector splitting (FVS) methods for the compressible Euler equations, which include gas-kinetic Beam scheme[8], Steger-Warming FVS method[9], and Lax-Friedrichs scheme. It shows that the density and the internal energy could keep non-negative values under the CFL condition for all above three schemes once the initial gas stays in a physically realizable state. The proof of positivity is closely related to the pseudo-particle representation of FVS schemes. This paper is about the positivity analysis of a class of flux-vector splitting (FVS) methods for the compressible Euler equations, which include gas-kinetic Beam scheme[8], Steger-Warming FVS method[9], and Lax-Friedrichs scheme. It shows that the density and the internal energy could keep non-negative values under the CFL condition for all above three schemes once the initial gas stays in a physically realizable state. The proof of positivity is closely related to the pseudo-particle representation of FVS schemes.
作者 汤华中 徐昆
出处 《计算数学》 CSCD 北大核心 2001年第4期469-476,共8页 Mathematica Numerica Sinica
基金 国家自然科学基金(19901031) 国家重点基础研究发展规划项目 计算物理国家级重点实验室基金 和科学与区程计算国家重点
关键词 EULER方程 保正性 通矢量分裂 Beam格式 Lax-Friedrichs格式 通矢量方法 流体力学 数值方法 Euler equations, positivity preserving, flux-vector splitting, gas-kinetic Beam scheme, Steger-Warming FVS method, Lax-Friedrichs scheme.
  • 相关文献

参考文献4

  • 1Tang H Z,Implicit difference schemes,in preparation,2000年 被引量:1
  • 2Tang T,Zangew Math Phys,1999年,50卷,258页 被引量:1
  • 3Kun Xu,VKI Fluid Dynamics Lecture Series,1998年 被引量:1
  • 4Perthame B,Numer Math,1996年,73卷,119页 被引量:1

同被引文献23

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部