期刊文献+
共找到189篇文章
< 1 2 10 >
每页显示 20 50 100
基于免疫克隆的核匹配追踪集成图像识别算法 被引量:6
1
作者 缑水平 焦李成 张向荣 《模式识别与人工智能》 EI CSCD 北大核心 2009年第1期79-85,共7页
为了从分类器集成系统中选择一组较优个体子集,从而改善集成学习系统的性能,提出一种基于免疫克隆选择的核匹配追踪集成图像识别算法.该算法充分利用免疫克隆算法的快速收敛于全局最优解的特性,对训练得到的多个子核匹配追踪分类器进行... 为了从分类器集成系统中选择一组较优个体子集,从而改善集成学习系统的性能,提出一种基于免疫克隆选择的核匹配追踪集成图像识别算法.该算法充分利用免疫克隆算法的快速收敛于全局最优解的特性,对训练得到的多个子核匹配追踪分类器进行免疫克隆选择,得到一个具有更好推广性能的集成系统.对Brodatz纹理图像库以及SAR图像进行目标识别.仿真实验结果表明,相比传统核匹配追踪分类器集成和基于遗传算法的选择集成方法,本文方法有更好的集成性能. 展开更多
关键词 核匹配追踪 选择集成 核匹配追踪集成 免疫克隆选择
原文传递
一种新的分类器选择集成算法 被引量:3
2
作者 尹光 朱玉全 陈耿 《计算机工程》 CAS CSCD 2012年第8期167-169,共3页
为提高集成分类器系统的分类性能,提出一种分类器选择集成算法MCC-SCEN。该算法选取基分类器集中具有最大互信息差异性的子集和最大个体分类能力的子集,以确定待扩展分类器集,选择具有较大混合分类能力的基分类器加入到待扩展集中,构成... 为提高集成分类器系统的分类性能,提出一种分类器选择集成算法MCC-SCEN。该算法选取基分类器集中具有最大互信息差异性的子集和最大个体分类能力的子集,以确定待扩展分类器集,选择具有较大混合分类能力的基分类器加入到待扩展集中,构成集成系统,进行加权投票并产生结果。实验结果表明,该方法优于经典的AdaBoost和Bagging方法,具有较高的分类准确率。 展开更多
关键词 多分类器系统 选择集成 差异性 分类能力 加权投票
下载PDF
面向异常数据流的多分类器选择集成方法 被引量:3
3
作者 杨融泽 柳毅 《计算机工程与应用》 CSCD 北大核心 2018年第2期107-113,共7页
传统的多分类器选择算法产生较大的计算和存储开销。另外,多分类器对异常数据流的预测稳定性是解决概念飘移的重要因素。通过引入改进的决策轮廓矩阵和支持熵解决了每个分类器集合之间模糊差异度问题,并将支持熵作为差异度度量的输入衡... 传统的多分类器选择算法产生较大的计算和存储开销。另外,多分类器对异常数据流的预测稳定性是解决概念飘移的重要因素。通过引入改进的决策轮廓矩阵和支持熵解决了每个分类器集合之间模糊差异度问题,并将支持熵作为差异度度量的输入衡量标准,使分类器集合之间的差异度计算更加稳定高效,并在此基础上提出了一种基于差异度集成的异常数据流检测方法并实现其算法;该方法应用在异常分类器选择模块,主要包括三个步骤:构建决策轮廓矩阵、整合支持熵、分类器集合差异度度量。实验结果表明,该算法对异常流量的预测精度和稳定性相比其他算法较好,由于分类器训练时间达到10^(-2)s左右,基本上能够适应数据流量检测的实时性需求。 展开更多
关键词 选择集成 异常数据流 决策轮廓矩阵 支持熵 差异度量
下载PDF
MapReduce环境下处理多类别不平衡数据的改进随机森林算法 被引量:3
4
作者 姚立 张曦煌 《微电子学与计算机》 CSCD 北大核心 2018年第11期139-144,共6页
针对传统MapReduce环境下的随机森林算法在处理多类别不平衡数据问题时仍然以全局最优点作为划分点,忽略了少数类对分类准确率的影响,文本提出了一种MapReduce环境下处理多类别不平衡数据的改进随机森林算法(MR-RF-SHDSE).该算法利用分... 针对传统MapReduce环境下的随机森林算法在处理多类别不平衡数据问题时仍然以全局最优点作为划分点,忽略了少数类对分类准确率的影响,文本提出了一种MapReduce环境下处理多类别不平衡数据的改进随机森林算法(MR-RF-SHDSE).该算法利用分层采样方法在各个类别中进行样本抽样,并以HDDT决策树作为基学习器以弱化数据偏置给分类准确率带来的影响,最后计算决策树的GMean值和不合度值,利用调和平均值作为衡量标准对决策树进行选择集成.通过实验证明,相比其他算法,MR-RF-SHDSE能够有效提高了对多类别不平衡数据集的分类准确率. 展开更多
关键词 MAPREDUCE 随机森林 分层采样 HDDT决策树 选择集成
下载PDF
面向类别不平衡负荷序列模式识别的两阶段选择集成学习策略 被引量:1
5
作者 王圆圆 韩丁 +3 位作者 王世谦 白宏坤 王磊 刘洋 《电力系统及其自动化学报》 CSCD 北大核心 2023年第1期86-95,共10页
为解决集成学习负荷模式识别中的类别不平衡及基分类器冗余等问题,提出一种计及类别平衡的两阶段选择集成电力负荷模式识别方法。首先,采用一种基于密度聚类的高斯人工合成少数类过采样技术,根据少数类负荷样本的密度分布特性合成新样本... 为解决集成学习负荷模式识别中的类别不平衡及基分类器冗余等问题,提出一种计及类别平衡的两阶段选择集成电力负荷模式识别方法。首先,采用一种基于密度聚类的高斯人工合成少数类过采样技术,根据少数类负荷样本的密度分布特性合成新样本,以强化负荷分类模型对少数类负荷样本的学习。然后,设计出一种包括基分类器聚类剪枝和优化选择集成的两阶段选择集成策略,基于基分类器池的训练结果,遴选最优基分类器子集参与负荷分类任务。最后,通过UCI标准数据集算例验证了所提方法的有效性和优越性。 展开更多
关键词 负荷模式识别 类别不平衡 基分类器冗余 选择集成
下载PDF
一种基于AP-Entropy选择集成的风控模型和算法 被引量:1
6
作者 王茂光 杨行 《计算机科学》 CSCD 北大核心 2021年第S02期71-76,80,共7页
近年来互联网金融网贷领域涌现出了众多的风控问题,对此采用多种特征选择方法预处理风控领域的数据指标,构建了全面的针对企业信用的风控指标体系,采用stacking集成策略研究了基于AP-Entropy的信用风险模型。信用风险模型有两层学习器,... 近年来互联网金融网贷领域涌现出了众多的风控问题,对此采用多种特征选择方法预处理风控领域的数据指标,构建了全面的针对企业信用的风控指标体系,采用stacking集成策略研究了基于AP-Entropy的信用风险模型。信用风险模型有两层学习器,引入选择集成思想,从种类和数量上筛选基学习器。首先,在Logistic回归、反向传播神经网络、AdaBoost等经典机器学习算法中,采用AP聚类算法选出适合企业信用风险的异质学习器作为基学习器;其次,在每次学习器迭代中,利用熵对学习器择优,自动选出F1值最高的基学习器,其中改进基于熵的学习器选择算法,提升了基学习器选择过程的效率,降低了模型的计算成本,模型选取XGBoost作为次级基学习器。实验结果表明,文中提出的模型和其他模型相比具有更好的学习效果和更强的泛化能力。 展开更多
关键词 风控指标体系 stacking集成策略 AP-Entropy信用风险模型 选择集成 AP聚类算法 基于熵的学习器选择算法 XGBoost
下载PDF
基于文化算法多种群协作SVM选择集成算法
7
作者 张朝阳 李卫忠 孟常亮 《计算机工程与设计》 CSCD 北大核心 2013年第8期2872-2876,共5页
针对离散二进制粒子群(binary particle swarm optimization,BPSO)算法在解决SVM集成选择问题时容易早熟的问题,提出了一种文化算法架构下的多种群协作算法(Ca-MultiPop)。结合BPSO算法的快速演化能力,利用遗传算法(genetic algorithm,... 针对离散二进制粒子群(binary particle swarm optimization,BPSO)算法在解决SVM集成选择问题时容易早熟的问题,提出了一种文化算法架构下的多种群协作算法(Ca-MultiPop)。结合BPSO算法的快速演化能力,利用遗传算法(genetic algorithm,GA)增加种群的多样性;在两种进化算法中使用不同的适应度函数,兼顾了集成精度和基分类器之间的差异性。仿真结果表明,该算法在计算精度方面相对于BPSO算法在解决SVM集成选择问题时有所提高。 展开更多
关键词 文化算法 离散二进制粒子群算法 遗传算法 支持向量机 选择集成
下载PDF
电子商务解决方案研究
8
作者 刘欣恰 《现代制造工程》 CSCD 2005年第S1期14-17,共4页
介绍电子商务解决方案的概念、分类、选择原因、选择方法,并介绍几个实用方案。
关键词 电子商务解决方案 个性化 选择集成
下载PDF
基于元学习动态选择集成的电力调度数据异常检测方法 被引量:28
9
作者 傅世元 高欣 +3 位作者 张浩 刘蒙 李军良 徐建航 《电网技术》 EI CSCD 北大核心 2022年第8期3248-3256,共9页
及时准确识别电力调度自动化系统业务运行异常对于维护具有“双高”特性的交直流混联大电网系统安全稳定运行具有重要意义。调度自动化系统运行业务种类繁多、业务状态监测维度多样且各业务之间存在复杂交互关系,导致调度监测数据的异... 及时准确识别电力调度自动化系统业务运行异常对于维护具有“双高”特性的交直流混联大电网系统安全稳定运行具有重要意义。调度自动化系统运行业务种类繁多、业务状态监测维度多样且各业务之间存在复杂交互关系,导致调度监测数据的异常模式呈现多样化的特点。现有基于动态选择集成的无监督异常检测方法存在衡量基检测器性能的评价基准不准确且只使用单一性能指标的问题,难以在多种异常分布模式上均保持较好的性能。该文提出一种基于元学习动态选择集成的电力调度数据异常检测方法。针对评价基准不准确的问题,提出一种混合选择集成思想,通过基于孤立森林的静态选择方法预先剔除性能较差的基检测器,再对筛选后的基检测器进行动态选择集成,有效提高了假真值的准确性;针对单一指标通用性弱的问题,提出融入元学习的基检测器动态选择集成策略,将多个基检测器的动态选择问题转换为二分类问题,设计多种指标作为元特征来训练元分类器,并根据其输出选择性能较好的基检测器进行检测,通过多种指标互补以获得更强的通用性。在30个权威公开数据集和某省级电网调度中心业务数据集上开展了大量实验,与多种典型集成异常检测方法进行了对比,验证了所提方法在曲线下面积值(area under curve,AUC)值指标上的先进性以及实际应用上的有效性。 展开更多
关键词 电力调度自动化系统 异常检测 集成学习 静态选择集成 动态选择集成 元学习
下载PDF
基于用电行为数字特征画像的电力用户两阶段分类方法 被引量:15
10
作者 王磊 刘洋 +3 位作者 李文峰 张杰 许立雄 邢哲铭 《电力建设》 CSCD 北大核心 2022年第2期70-80,共11页
对用户开展精细化用电行为画像及分类,是电力企业精准掌握用户用电规律、提升服务水平和市场竞争力的关键因素之一。针对当前电力用户分类研究中用户用电行为画像结果片面、集成学习负荷分类研究中的基分类器冗余问题及负荷类别不平衡问... 对用户开展精细化用电行为画像及分类,是电力企业精准掌握用户用电规律、提升服务水平和市场竞争力的关键因素之一。针对当前电力用户分类研究中用户用电行为画像结果片面、集成学习负荷分类研究中的基分类器冗余问题及负荷类别不平衡问题,提出一种基于用电行为数字特征画像的电力用户两阶段分类算法。第一阶段,提出一种结合谱聚类和集成强基分类器的用户日负荷曲线分类算法:首先,针对集成学习基分类器学习能力弱的不足,提出一种基于改进长短期记忆网络(long short-term memory,LSTM)的强基分类器;其次,针对基分类器冗余问题,提出一种基于最小正则化代理经验风险的优化选择集成策略;然后,提出一种基于密度的高斯过采样方法处理类别不平衡。第二阶段,基于负荷曲线分类结果,构建以日负荷模式发生概率为数字特征的用户用电行为画像,采用谱聚类算法对用户画像实施分类。最后,通过实测用户负荷数据验证了所提方法的有效性。 展开更多
关键词 电力用户分类 数字特征画像 负荷曲线分类 类别不平衡 优化选择集成
原文传递
基于自适应无参经验小波变换和选择集成分类模型的运动想象 被引量:5
11
作者 何群 王煜文 +2 位作者 杜硕 陈晓玲 谢平 《物理学报》 SCIE EI CAS CSCD 北大核心 2018年第11期278-289,共12页
运动想象模式识别率的提高对脑机接口(BCI)技术的应用具有重要意义,本文采用自适应无参经验小波变换(APEWT)和选择集成分类模型相结合的方法提高脑电(EEG)信号的分类识别准确率.首先,通过APEWT将EEG信号分解成不同的模态;然后,使用最优... 运动想象模式识别率的提高对脑机接口(BCI)技术的应用具有重要意义,本文采用自适应无参经验小波变换(APEWT)和选择集成分类模型相结合的方法提高脑电(EEG)信号的分类识别准确率.首先,通过APEWT将EEG信号分解成不同的模态;然后,使用最优模态重构后的信号计算其能量谱(ES)特征,使用最优模态分量计算其边际谱(MS)特征;最后,将不同时间段的ES特征和不同频段的MS特征输入到构建的选择集成分类模型中,从而得到其分类结果,并将该方法与其他4种组合方法进行比较.实验结果表明,本文方法具有较好分类准确率和实时性,其平均分类正确率高于其他4种方法,同时较近期使用相同数据的文献也有优势.本文为在线运动想象类BCI的应用提供了新的方法和思路. 展开更多
关键词 自适应无参经验小波变换 选择集成分类模型 运动想象 脑机接口
下载PDF
基于随机森林动态集成的水下尺度目标识别
12
作者 曹涛 邓剑晶 +1 位作者 岳玲 李永胜 《水下无人系统学报》 2024年第3期552-557,共6页
正确识别目标是水下声自导武器攻击敌方目标的关键。文中提出一种基于动态选择集成技术的水下声自导武器实时目标识别方法。利用水下声自导武器主动宽带探测波形照射下目标不同的反射特性,从目标宽带相关检测输出提取了能量分布和空间... 正确识别目标是水下声自导武器攻击敌方目标的关键。文中提出一种基于动态选择集成技术的水下声自导武器实时目标识别方法。利用水下声自导武器主动宽带探测波形照射下目标不同的反射特性,从目标宽带相关检测输出提取了能量分布和空间分布统计特征,并构建了基于随机森林的动态选择集成模型,利用海试数据集进行训练与测试。仿真分析表明,文中所提出的动态集成模型识别效果优于其他分类算法,可以较好地应用于水下声自导武器目标识别中。 展开更多
关键词 水下声自导武器 目标识别 动态选择集成 随机森林
下载PDF
基于BERT模型和动态集成选择的多分类文本情感识别研究
13
作者 张忠良 费秦君 +1 位作者 陈愉予 雒兴刚 《中国管理科学》 CSSCI CSCD 北大核心 2024年第6期140-150,共11页
针对传统方法提取文本特征向量存在语义缺失,以及有些文本情感识别任务涉及多分类问题,提出一种新的基于BERT(bidirectional encoder representations from transformers)和动态集成选择的多分类文本情感识别策略。首先,采用BERT对文本... 针对传统方法提取文本特征向量存在语义缺失,以及有些文本情感识别任务涉及多分类问题,提出一种新的基于BERT(bidirectional encoder representations from transformers)和动态集成选择的多分类文本情感识别策略。首先,采用BERT对文本进行向量化处理,针对多分类文本情感识别任务采用OVO分解策略拆分成多个二分类子任务;其次,针对每个子任务采用动态集成选择策略构建分类器集成模型;最后,基于聚合策略获得最终的预测结果。采用公开的影评数据集对所提出的方法进行实证分析。结果表明:(1)相较于传统的TF-IDF与Word2Vec方法,基于BERT模型的词向量化处理有助于提高文本情感识别精度;(2)针对多分类情感识别任务中的每个子问题,采用动态集成选择策略可以有效提高识别效果;(3)本文建立的预测模型性能比其他现有情感识别模型具有显著优势。 展开更多
关键词 文本情感识别 BERT 多分类 动态选择集成 分解策略
原文传递
基于相关性分析的瓦斯灾害选择集成预测模型 被引量:2
14
作者 贾澎涛 吕巧林 《计算机应用研究》 CSCD 北大核心 2019年第12期3769-3772,共4页
针对瓦斯灾害危险性预测中预测性能低的问题,对一种基于矿井内瓦斯浓度与环境因素相关性分析的瓦斯灾害选择集成预测方法进行了研究。首先,分析实验数据中样本属性与瓦斯浓度的相关性,并根据相关性分析结果进行属性约简得到新的数据集;... 针对瓦斯灾害危险性预测中预测性能低的问题,对一种基于矿井内瓦斯浓度与环境因素相关性分析的瓦斯灾害选择集成预测方法进行了研究。首先,分析实验数据中样本属性与瓦斯浓度的相关性,并根据相关性分析结果进行属性约简得到新的数据集;其次,训练基学习器并应用优化集成前序选择方法建立选择集成回归学习模型;最后,将模型应用于瓦斯灾害预测。实验结果表明,基于相关性分析的选择集成回归学习模型对瓦斯灾害危险性的识别率比未进行相关性分析的四个基学习器平均提高了24%,比未进行相关性分析的选择集成回归学习模型提高了7. 6%。 展开更多
关键词 瓦斯灾害 相关性分析 选择集成回归学习 集成前序选择 识别率
下载PDF
基于集成间隔优化的对海雷达目标识别算法 被引量:1
15
作者 范学满 胡生亮 贺静波 《华中科技大学学报(自然科学版)》 EI CAS CSCD 北大核心 2017年第12期73-79,共7页
综合考虑对海雷达目标识别的高实时性和强泛化能力要求,提出一种利用模拟退火算法(SA)进行集成间隔优化的静态选择集成(SSE)算法.该算法首先利用SA基于集成间隔最大化搜索出不同大小的最优基分类器子集,然后利用集成分类精确度从中筛选... 综合考虑对海雷达目标识别的高实时性和强泛化能力要求,提出一种利用模拟退火算法(SA)进行集成间隔优化的静态选择集成(SSE)算法.该算法首先利用SA基于集成间隔最大化搜索出不同大小的最优基分类器子集,然后利用集成分类精确度从中筛选出最终的集成分类器系统.进而提出一种分类器权值、样本权值的迭代求解算法,并考虑这两类权值以及基分类器的分类置信度,给出了8种集成间隔定义.在自建全极化高分辨率距离像(HRRP)分类数据集和17个UCI数据集上分析了集成间隔定义对集成算法性能的影响,通过对比实验验证了该算法的有效性. 展开更多
关键词 对海雷达 目标识别 集成间隔 静态选择集成 模拟退火
原文传递
基于改进离散二进制粒子群的SVM选择集成算法 被引量:1
16
作者 孟常亮 李卫忠 +1 位作者 廖勇 华继学 《计算机工程与应用》 CSCD 北大核心 2011年第28期166-168,231,共4页
针对基于离散二进制粒子群(BPSO)的SVM选择集成算法的分类精度不高,以及所选分类器个数过多等问题,利用改进的离散二进制粒子群算法(IBPSO)和SVM选择集成算法相结合,提出基于IBPSO的SVM选择集成算法。通过选用合适的适应度函数以及调节... 针对基于离散二进制粒子群(BPSO)的SVM选择集成算法的分类精度不高,以及所选分类器个数过多等问题,利用改进的离散二进制粒子群算法(IBPSO)和SVM选择集成算法相结合,提出基于IBPSO的SVM选择集成算法。通过选用合适的适应度函数以及调节因子k,进行多次仿真,实验表明,对由boostrap方式生成的SVM集合,基于IBPSO的SVM选择集成在精度和分类器个数方面均优于基于BPSO的SVM选择集成,证明了IBPSO算法的优越性。 展开更多
关键词 离散二进制粒子群 支持向量机(SVM)选择集成 适应度函数 调节因子
下载PDF
选择性集成学习算法综述 被引量:139
17
作者 张春霞 张讲社 《计算机学报》 EI CSCD 北大核心 2011年第8期1399-1410,共12页
集成学习因其能显著提高一个学习系统的泛化能力而得到了机器学习界的广泛关注,但随着基学习机数目的增多,集成学习机的预测速度明显下降,其所需的存储空间也迅速增加.选择性集成学习的主要目的是进一步改善集成学习机的预测效果,提高... 集成学习因其能显著提高一个学习系统的泛化能力而得到了机器学习界的广泛关注,但随着基学习机数目的增多,集成学习机的预测速度明显下降,其所需的存储空间也迅速增加.选择性集成学习的主要目的是进一步改善集成学习机的预测效果,提高集成学习机的预测速度,并降低其存储需求.该文对现有的选择性集成学习算法进行了详细综述,按照算法采用的选择策略对其进行了分类,并分析了各种算法的主要特点,最后对选择性集成学习在将来的可能研究方向进行了探讨. 展开更多
关键词 选择集成学习 基学习机 集成学习机 多样性 泛化能力
下载PDF
基于Bagging的选择性聚类集成 被引量:95
18
作者 唐伟 周志华 《软件学报》 EI CSCD 北大核心 2005年第4期496-502,共7页
使用集成学习技术来提高聚类性能.由于聚类使用的训练样本缺乏期望输出,与监督学习下的集成相比,在对个体学习器进行结合时更加困难.通过对不同的聚类结果进行配准,并基于互信息权进行个体学习器的选择,提出了基于Bagging的选择性聚类... 使用集成学习技术来提高聚类性能.由于聚类使用的训练样本缺乏期望输出,与监督学习下的集成相比,在对个体学习器进行结合时更加困难.通过对不同的聚类结果进行配准,并基于互信息权进行个体学习器的选择,提出了基于Bagging的选择性聚类集成算法.实验表明,该算法能够有效地改善聚类结果. 展开更多
关键词 机器学习 集成学习 聚类 非监督学习 选择集成
下载PDF
基于K折交叉验证的选择性集成分类算法 被引量:55
19
作者 胡局新 张功杰 《科技通报》 北大核心 2013年第12期115-117,共3页
针对传统选择性集成方法确定个体分类器权重参数不准确、计算复杂度较高的不足,提出了一种基于K折交叉验证的选择性集成分类算法。该算法首先采用集成学习思想训练一定数目的分类器,然后对每一个分类器设定权重参数初值,并利用交叉验证... 针对传统选择性集成方法确定个体分类器权重参数不准确、计算复杂度较高的不足,提出了一种基于K折交叉验证的选择性集成分类算法。该算法首先采用集成学习思想训练一定数目的分类器,然后对每一个分类器设定权重参数初值,并利用交叉验证思想确定对应最大平均分类准确率的参数作为最终的个体分类器的权重因子,最后将权重小于某个预设阈值的分类器剔除,完成选择性集成学习。由于交叉验证方法可以较快并且较为精确地进行权重参数的确定,所以本算法可以有效地提高选择性集成方法的分类性能。在UCI标准数据集上的仿真实验充分证明了本算法的有效性。 展开更多
关键词 选择集成 交叉验证 分类器 权重参数
下载PDF
基于EMD和选择性集成学习算法的磨机负荷参数软测量 被引量:42
20
作者 汤健 柴天佑 +4 位作者 丛秋梅 苑明哲 赵立杰 刘卓 余文 《自动化学报》 EI CSCD 北大核心 2014年第9期1853-1866,共14页
针对磨机筒体振动和振声信号组成复杂难以解释、蕴含信息存在冗余性和互补性、与磨机负荷参数映射关系难以描述等问题,提出了基于经验模态分解(Empirical mode decomposition,EMD)技术和选择性集成学习算法分析筒体振动与振声信号组成,... 针对磨机筒体振动和振声信号组成复杂难以解释、蕴含信息存在冗余性和互补性、与磨机负荷参数映射关系难以描述等问题,提出了基于经验模态分解(Empirical mode decomposition,EMD)技术和选择性集成学习算法分析筒体振动与振声信号组成,建立磨机负荷参数软测量模型的新方法.首先从机理上定性分析了筒体振动及振声信号组成的复杂性;然后采用EMD技术将原始信号自适应分解为具有不同时间尺度的系列组成成分,即本征模态函数(Intrinsic mode function,IMF);接着在频域内基于互信息(Mutual information,MI)方法分析并选择IMF频谱特征;最后采用基于核偏最小二乘(Kernel partial least square,KPLS)建模方法、分支定界优化算法的选择性集成学习方法建立磨机负荷参数软测量模型,实现了多源多尺度频谱特征的选择性信息融合.基于实验球磨机的实际运行数据仿真验证了该方法的有效性. 展开更多
关键词 经验模态分解 选择集成建模 磨机负荷参数 选择性信息融合 频谱特征
下载PDF
上一页 1 2 10 下一页 到第
使用帮助 返回顶部