期刊文献+

基于集成间隔优化的对海雷达目标识别算法 被引量:1

Target recognition method for maritime surveillance radars based on ensemble margin optimization
原文传递
导出
摘要 综合考虑对海雷达目标识别的高实时性和强泛化能力要求,提出一种利用模拟退火算法(SA)进行集成间隔优化的静态选择集成(SSE)算法.该算法首先利用SA基于集成间隔最大化搜索出不同大小的最优基分类器子集,然后利用集成分类精确度从中筛选出最终的集成分类器系统.进而提出一种分类器权值、样本权值的迭代求解算法,并考虑这两类权值以及基分类器的分类置信度,给出了8种集成间隔定义.在自建全极化高分辨率距离像(HRRP)分类数据集和17个UCI数据集上分析了集成间隔定义对集成算法性能的影响,通过对比实验验证了该算法的有效性. In consideration of the high demands on real-time performance and generalization ability of the target recognition for maritime surveillance radars,a novel static selective ensemble(SSE)method based on the ensemble margin optimization was proposed.First,optimal subsets of base classifiers with different size were obtained by maximizing the ensemble margin using simulated annealing(SA),and then,the classification accuracy was used to screen all the candidates to get the final ensemble system.Besides,an iterative algorithm was proposed to calculate the weights of base classifiers and training samples.And then,on the basis of the two kinds of weights as well as classification confidence,eight definitions of ensemble margin were illustrated.The influences of margin definition on the ensemble performance were analyzed using a self-built high resolution range profile(HRRP)dataset and seventeen UCI databases.Finally,the feasibility of the novel algorithm was verified by the contrast experiment.
作者 范学满 胡生亮 贺静波 Fan Xueman;Hu Shengliang;He Jingbo(Institute of Electronics Engineering, Naval University of Engineering, Wuhan 430033, Chin)
出处 《华中科技大学学报(自然科学版)》 EI CAS CSCD 北大核心 2017年第12期73-79,共7页 Journal of Huazhong University of Science and Technology(Natural Science Edition)
基金 国家自然科学基金资助项目(61401493) 国家部委基金资助项目(9140A01010415JB11002)
关键词 对海雷达 目标识别 集成间隔 静态选择集成 模拟退火 maritime surveillance radar target recognition ensemble margin static selective ensem-ble simulated annealing
  • 相关文献

参考文献5

二级参考文献44

  • 1张静,宋锐,郁文贤,夏胜平,胡卫东.基于混淆矩阵和Fisher准则构造层次化分类器[J].软件学报,2005,16(9):1560-1567. 被引量:27
  • 2陈华根,李丽华,许惠平,陈冰.改进的非常快速模拟退火算法[J].同济大学学报(自然科学版),2006,34(8):1121-1125. 被引量:46
  • 3王晓丹,孙东延,郑春颖,张宏达,赵学军.一种基于AdaBoost的SVM分类器[J].空军工程大学学报(自然科学版),2006,7(6):54-57. 被引量:22
  • 4Martfnez-Mtoz G, Su&ez A. Using Boosting to prune Bagging ensembles [ J]. Pattern Recognition Letters, 2007,28 ( 1 ) : 156 - 165. 被引量:1
  • 5Zhou Zlai-hua, Wu Jian-xin, Tang Wei. Ensembling neural net- works: many could be better than all [ J ]. Artificial Intelli- gence,21XE, 137 ( 1 - 2) :239 - 263. 被引量:1
  • 6Tao Hui, Xiao-ping Ma, Mei-ying Qiao. Subspaceselecfive en- semble algorithm based on feature clustering [ J ]. Journal of Computers, 2013,8(2) :509 - 516. 被引量:1
  • 7Xiao Jin, He Chang-zheng, Jiang Xiao-yi, et al. A dynamic classifier ensemble selection approach for noise data [ J]. Infor- marion Sciences, 2010,180(18) :3402 - 3421. 被引量:1
  • 8Cavalin P R, et al. Dynamic selection of ensembles of classi- tiers using contextual information [ A ]. Multiple Classifier Systems [ C]. Berlin Heidelberg: Springer-Verlag, 2010.145 - 154. 被引量:1
  • 9Zhang Li, Zhou Wei-da. Sparse ensemble using weighted combination methods based on linear programming [ J ], Pat- tern Recognition, 2011,44( 1 ) :97 - 106. 被引量:1
  • 10Breiman L. Bagging predictors [ J]. Machine Learning, 1996, 24(2) : 123 - 140. 被引量:1

共引文献57

同被引文献71

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部