To improve the mechanical properties of Ti6Al4V alloy prepared by selective laser melting(SLM)process,the precision forging was conducted at950°C and different strains and strain rates.The microstructure evolutio...To improve the mechanical properties of Ti6Al4V alloy prepared by selective laser melting(SLM)process,the precision forging was conducted at950°C and different strains and strain rates.The microstructure evolution of as-built samples and forged samples in both horizontal and vertical sections was visualized and analyzed by optical microscope and X-ray diffraction.The microstructure was improved by the precision forging and subsequent water quenching.The porosity in each section was accounted.It can be seen that high strain rate and large deformation result in low porosity,consequently contributing to a better fatigue performance.The micro-hardness was lowered after precision forging and water quenching,while the difference of microhardness between the horizontal and vertical sections became smaller,which illustrated that this process can improve the anisotropy of structural components fabricated by SLM.展开更多
基金Project(50975222)supported by the National Natural Science Foundation of ChinaProject(2014ko8-34)supported by the Industrial Research Project of Shaanxi Province,China
文摘To improve the mechanical properties of Ti6Al4V alloy prepared by selective laser melting(SLM)process,the precision forging was conducted at950°C and different strains and strain rates.The microstructure evolution of as-built samples and forged samples in both horizontal and vertical sections was visualized and analyzed by optical microscope and X-ray diffraction.The microstructure was improved by the precision forging and subsequent water quenching.The porosity in each section was accounted.It can be seen that high strain rate and large deformation result in low porosity,consequently contributing to a better fatigue performance.The micro-hardness was lowered after precision forging and water quenching,while the difference of microhardness between the horizontal and vertical sections became smaller,which illustrated that this process can improve the anisotropy of structural components fabricated by SLM.