期刊导航
期刊开放获取
cqvip
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
2
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于样本优化和主成分分析的多通道拉曼光谱重建及其快速成像
被引量:
2
1
作者
范贤光
刘龙
+4 位作者
支瑜亮
康哲铭
夏宏
张佳杰
王昕
《光谱学与光谱分析》
SCIE
EI
CAS
CSCD
北大核心
2020年第8期2495-2499,共5页
拉曼成像是一种无损伤、无需标记的光谱成像技术,在生物医学领域得到了广泛的应用。然而,由于大多数生物样本中的自发拉曼信号都很弱,为了获得较好的成像结果,需要较长的时间来获取高信噪比的拉曼光谱,严重影响了拉曼成像的时空分辨率,...
拉曼成像是一种无损伤、无需标记的光谱成像技术,在生物医学领域得到了广泛的应用。然而,由于大多数生物样本中的自发拉曼信号都很弱,为了获得较好的成像结果,需要较长的时间来获取高信噪比的拉曼光谱,严重影响了拉曼成像的时空分辨率,阻碍了其在快速动态体系中的应用。多通道拉曼成像是解决这一问题的有效途径之一,在多通道拉曼成像技术中,完整拉曼光谱的标定-重建算法是关键。目前,适用于光谱重建的算法有伪逆法、 Wiener估计算法等,这些方法虽然简单且易于实现,但是在应用于多通道拉曼成像时,一方面易受噪声、振动等非线性因素的直接干扰,另一方面在多通道拉曼成像中,数量相对较少的训练样本和坏样本的存在均很容易影响重建效果。为解决这两类因素的影响,本文提出了一种基于训练样本优化和主成分分析(PCA)的拉曼光谱重建算法。首先,利用滤光片理论响应矩阵函数计算训练样本的模拟窄带测量值,借助Wiener估计重建完整拉曼光谱,得到重建光谱的模拟窄带测量值,比较样本与重建光谱的窄带测量值,完成训练样本的优化;然后,基于多项式回归,拓展优化处理后的窄带测量值,降低非线性因素的干扰;最后,利用主成分分析,提取训练样本主要信息,完成转移矩阵的计算,并引入归一化处理,实现拉曼光谱的快速重建。在试验中,选取有机玻璃(PMMA)作为实验样本,利用伪逆法、 Wiener估计算法和本算法,分别完成拉曼光谱重建。采用均方根误差,评价拉曼光谱的重建精度。结果证明,该算法优于传统算法,为拉曼成像技术进一步在快速动态体系中的应用提供了理论支持。
展开更多
关键词
多通道拉曼成像
训练样本
优化
PCA
光谱重建
下载PDF
职称材料
基于仿射聚类的主动SVM多类分类方法
2
作者
张建朋
陈福才
《计算机应用研究》
CSCD
北大核心
2012年第9期3316-3319,共4页
针对现有的主动学习算法在多分类器应用中存在准确率低、速度慢等问题,将基于仿射传播(AP)聚类的主动学习算法引入到多分类支持向量机中,每次迭代主动选择最有利于改善多类SVM分类器性能的N个新样本点添加到训练样本点中进行学习,使得...
针对现有的主动学习算法在多分类器应用中存在准确率低、速度慢等问题,将基于仿射传播(AP)聚类的主动学习算法引入到多分类支持向量机中,每次迭代主动选择最有利于改善多类SVM分类器性能的N个新样本点添加到训练样本点中进行学习,使得在花费较小标注代价情况下,能够获得较高的分类性能。在多个不同数据集上的实验结果表明,新方法能够有效地减少分类器训练时所需的人工标注样本点的数量,并获得较高的准确率和较好的鲁棒性。
展开更多
关键词
仿射传播聚类
多分类支持向量机
主动学习算法
训练样本
点
优化
下载PDF
职称材料
题名
基于样本优化和主成分分析的多通道拉曼光谱重建及其快速成像
被引量:
2
1
作者
范贤光
刘龙
支瑜亮
康哲铭
夏宏
张佳杰
王昕
机构
厦门大学航空航天学院仪器与电气系
传感技术福建省高等学校重点实验室
出处
《光谱学与光谱分析》
SCIE
EI
CAS
CSCD
北大核心
2020年第8期2495-2499,共5页
基金
国家自然科学基金项目(21874113)
国家重大科研仪器研制项目(21627811)资助。
文摘
拉曼成像是一种无损伤、无需标记的光谱成像技术,在生物医学领域得到了广泛的应用。然而,由于大多数生物样本中的自发拉曼信号都很弱,为了获得较好的成像结果,需要较长的时间来获取高信噪比的拉曼光谱,严重影响了拉曼成像的时空分辨率,阻碍了其在快速动态体系中的应用。多通道拉曼成像是解决这一问题的有效途径之一,在多通道拉曼成像技术中,完整拉曼光谱的标定-重建算法是关键。目前,适用于光谱重建的算法有伪逆法、 Wiener估计算法等,这些方法虽然简单且易于实现,但是在应用于多通道拉曼成像时,一方面易受噪声、振动等非线性因素的直接干扰,另一方面在多通道拉曼成像中,数量相对较少的训练样本和坏样本的存在均很容易影响重建效果。为解决这两类因素的影响,本文提出了一种基于训练样本优化和主成分分析(PCA)的拉曼光谱重建算法。首先,利用滤光片理论响应矩阵函数计算训练样本的模拟窄带测量值,借助Wiener估计重建完整拉曼光谱,得到重建光谱的模拟窄带测量值,比较样本与重建光谱的窄带测量值,完成训练样本的优化;然后,基于多项式回归,拓展优化处理后的窄带测量值,降低非线性因素的干扰;最后,利用主成分分析,提取训练样本主要信息,完成转移矩阵的计算,并引入归一化处理,实现拉曼光谱的快速重建。在试验中,选取有机玻璃(PMMA)作为实验样本,利用伪逆法、 Wiener估计算法和本算法,分别完成拉曼光谱重建。采用均方根误差,评价拉曼光谱的重建精度。结果证明,该算法优于传统算法,为拉曼成像技术进一步在快速动态体系中的应用提供了理论支持。
关键词
多通道拉曼成像
训练样本
优化
PCA
光谱重建
Keywords
Multi-channel image
Sample optimization
PCA
Spectral reconstruction
分类号
O657.37 [理学—分析化学]
下载PDF
职称材料
题名
基于仿射聚类的主动SVM多类分类方法
2
作者
张建朋
陈福才
机构
国家数字交换系统工程技术研究中心
出处
《计算机应用研究》
CSCD
北大核心
2012年第9期3316-3319,共4页
基金
国家"863"计划资助项目(2011AA010603)
文摘
针对现有的主动学习算法在多分类器应用中存在准确率低、速度慢等问题,将基于仿射传播(AP)聚类的主动学习算法引入到多分类支持向量机中,每次迭代主动选择最有利于改善多类SVM分类器性能的N个新样本点添加到训练样本点中进行学习,使得在花费较小标注代价情况下,能够获得较高的分类性能。在多个不同数据集上的实验结果表明,新方法能够有效地减少分类器训练时所需的人工标注样本点的数量,并获得较高的准确率和较好的鲁棒性。
关键词
仿射传播聚类
多分类支持向量机
主动学习算法
训练样本
点
优化
Keywords
affinity propagation clustering
multi-class support vector machine (SVM)
active learning
training sample optimization
分类号
TP181 [自动化与计算机技术—控制理论与控制工程]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于样本优化和主成分分析的多通道拉曼光谱重建及其快速成像
范贤光
刘龙
支瑜亮
康哲铭
夏宏
张佳杰
王昕
《光谱学与光谱分析》
SCIE
EI
CAS
CSCD
北大核心
2020
2
下载PDF
职称材料
2
基于仿射聚类的主动SVM多类分类方法
张建朋
陈福才
《计算机应用研究》
CSCD
北大核心
2012
0
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部