针对CEEMD(Complementary Ensemble Empirical Model Decomposition)方法在处理爆破振动信号中模态混叠和虚假分量问题方面的局限性,提出一种改进的解相关CEEMD方法。第一,对信号端点进行特殊处理后,采用CEEMD对信号进行分解;第二,求取...针对CEEMD(Complementary Ensemble Empirical Model Decomposition)方法在处理爆破振动信号中模态混叠和虚假分量问题方面的局限性,提出一种改进的解相关CEEMD方法。第一,对信号端点进行特殊处理后,采用CEEMD对信号进行分解;第二,求取各IMF分量信号与原信号的相关系数及其频谱图,共同判定虚假分量;第三,将虚假分量与主分量相加后,通过解相关计算消除模态混叠。仿真信号的CEEMD分解结果以及相关系数与能量插值计算表明,改进的解相关CEEMD方法分解精度比EMD(Empirical Model Decomposition)和CEEMD高,有效抑制了信号模态混叠现象,能够避免直接处理虚假分量而带来的能量损失。应用于爆破振动信号分解,基本保证了各IMF分量非主频率信号的能量比例较低。改进方法有效消除了爆破振动信号的模态混叠和虚假分量现象。展开更多
Variations in temperature and moisture play an important role in soil organic matter(SOM) decomposition. However, relationships between changes in microbial community composition induced by increasing temperature and ...Variations in temperature and moisture play an important role in soil organic matter(SOM) decomposition. However, relationships between changes in microbial community composition induced by increasing temperature and SOM decomposition are still unclear.The present study was conducted to investigate the effects of temperature and moisture levels on soil respiration and microbial communities involved in straw decomposition and elucidate the impact of microbial communities on straw mass loss. A 120-d litterbag experiment was conducted using wheat and maize straw at three levels of soil moisture(40%, 70%, and 90% of water-holding capacity)and temperature(15, 25, and 35?C). The microbial communities were then assessed by phospholipid fatty acid(PLFA) analysis.With the exception of fungal PLFAs in maize straw at day 120, the PLFAs indicative of Gram-negative bacteria and fungi decreased with increasing temperatures. Temperature and straw C/N ratio significantly affected the microbial PLFA composition at the early stage, while soil microbial biomass carbon(C) had a stronger effect than straw C/N ratio at the later stage. Soil moisture levels exhibited no significant effect on microbial PLFA composition. Total PLFAs significantly influenced straw mass loss at the early stage of decomposition, but not at the later stage. In addition, the ratio of Gram-negative and Gram-positive bacterial PLFAs was negatively correlated with the straw mass loss. These results indicated that shifts in microbial PLFA composition induced by temperature, straw quality, and microbial C sources could lead to changes in straw decomposition.展开更多
文摘针对CEEMD(Complementary Ensemble Empirical Model Decomposition)方法在处理爆破振动信号中模态混叠和虚假分量问题方面的局限性,提出一种改进的解相关CEEMD方法。第一,对信号端点进行特殊处理后,采用CEEMD对信号进行分解;第二,求取各IMF分量信号与原信号的相关系数及其频谱图,共同判定虚假分量;第三,将虚假分量与主分量相加后,通过解相关计算消除模态混叠。仿真信号的CEEMD分解结果以及相关系数与能量插值计算表明,改进的解相关CEEMD方法分解精度比EMD(Empirical Model Decomposition)和CEEMD高,有效抑制了信号模态混叠现象,能够避免直接处理虚假分量而带来的能量损失。应用于爆破振动信号分解,基本保证了各IMF分量非主频率信号的能量比例较低。改进方法有效消除了爆破振动信号的模态混叠和虚假分量现象。
文摘Variations in temperature and moisture play an important role in soil organic matter(SOM) decomposition. However, relationships between changes in microbial community composition induced by increasing temperature and SOM decomposition are still unclear.The present study was conducted to investigate the effects of temperature and moisture levels on soil respiration and microbial communities involved in straw decomposition and elucidate the impact of microbial communities on straw mass loss. A 120-d litterbag experiment was conducted using wheat and maize straw at three levels of soil moisture(40%, 70%, and 90% of water-holding capacity)and temperature(15, 25, and 35?C). The microbial communities were then assessed by phospholipid fatty acid(PLFA) analysis.With the exception of fungal PLFAs in maize straw at day 120, the PLFAs indicative of Gram-negative bacteria and fungi decreased with increasing temperatures. Temperature and straw C/N ratio significantly affected the microbial PLFA composition at the early stage, while soil microbial biomass carbon(C) had a stronger effect than straw C/N ratio at the later stage. Soil moisture levels exhibited no significant effect on microbial PLFA composition. Total PLFAs significantly influenced straw mass loss at the early stage of decomposition, but not at the later stage. In addition, the ratio of Gram-negative and Gram-positive bacterial PLFAs was negatively correlated with the straw mass loss. These results indicated that shifts in microbial PLFA composition induced by temperature, straw quality, and microbial C sources could lead to changes in straw decomposition.