目前的绝缘子及缺陷目标检测算法中普遍存在着诸如误检、漏检和检测精度低等一系列问题,提出一种改进的YOLOv9绝缘子及缺陷目标检测算法来更好地检测绝缘子及其残缺缺陷。首先,在YOLOv9的核心模块RepNCSPELAN中嵌入多样性分支块DBB,DBB...目前的绝缘子及缺陷目标检测算法中普遍存在着诸如误检、漏检和检测精度低等一系列问题,提出一种改进的YOLOv9绝缘子及缺陷目标检测算法来更好地检测绝缘子及其残缺缺陷。首先,在YOLOv9的核心模块RepNCSPELAN中嵌入多样性分支块DBB,DBB可以增强单个卷积的表示能力,丰富特征空间,提高模型的特征提取能力,提升模型性能,同时基本不增加推理时间成本。其次,使用Haar小波的下采样HWD替换传统下采样,可以降低特征图的空间分辨率,同时保留尽可能多的信息,并且与传统的下采样方法相比,可以有效降低信息不确定性。最后使用MPDIoU作为模型的损失函数,MPDIoU通过直接计算预测框和真实框之间的关键点距离,能更准确地反映预测框和真实框之间的差异,从而提升模型的平均精度。在绝缘子及缺陷数据集上,改进后的算法YOLOv9-DHM的平均检测精度(Mean Average Precision,mAP)提高至96.8%,相比于原始算法提高了2.2%,精确率和召回率分别提高至95.4%和94.5%。改进后的算法相比原始算法,平均检测精度有明显提升,证明了算法改进后的可行性。展开更多
针对现有输电线路绝缘子缺陷检测模型在雨天复杂场景下识别效果差、推理速度慢等问题,在YOLOv7-tiny(you only look once version 7-tiny)的基础上提出了RID-YOLOv7(rain insulator detection-YOLOv7)轻量级雨天场景绝缘子缺陷检测模型...针对现有输电线路绝缘子缺陷检测模型在雨天复杂场景下识别效果差、推理速度慢等问题,在YOLOv7-tiny(you only look once version 7-tiny)的基础上提出了RID-YOLOv7(rain insulator detection-YOLOv7)轻量级雨天场景绝缘子缺陷检测模型。首先探索了坐标注意力机制(coordinate attention,CA)在主干特征提取网络中的最优嵌入位置,提升了模型对目标位置关键特征的提取能力;然后在颈部特征融合网络中引入了幻影混洗卷积(ghost shuffle convolution,GSConv)和幻影混洗跨级部分矢量化旋涡(vortex of vectorized ghost shuffle cross stage partial,VoV-GSCSP),大幅降低了推理时间;最后使用了明智交并比(wise intersection over union,WIoU)优化边界框定位损失函数,提高了模型收敛效率。结果表明,与原始YOLOv7-tiny相比,RID-YOLOv7模型的精确率、召回率和平均精确率均值分别提升了2.41%、5.44%和3.22%,推理速度为88.7帧/s,有效平衡了检测速度和精度。该模型适合对雨天场景下输电线路绝缘子缺陷进行实时检测。展开更多
文摘目前的绝缘子及缺陷目标检测算法中普遍存在着诸如误检、漏检和检测精度低等一系列问题,提出一种改进的YOLOv9绝缘子及缺陷目标检测算法来更好地检测绝缘子及其残缺缺陷。首先,在YOLOv9的核心模块RepNCSPELAN中嵌入多样性分支块DBB,DBB可以增强单个卷积的表示能力,丰富特征空间,提高模型的特征提取能力,提升模型性能,同时基本不增加推理时间成本。其次,使用Haar小波的下采样HWD替换传统下采样,可以降低特征图的空间分辨率,同时保留尽可能多的信息,并且与传统的下采样方法相比,可以有效降低信息不确定性。最后使用MPDIoU作为模型的损失函数,MPDIoU通过直接计算预测框和真实框之间的关键点距离,能更准确地反映预测框和真实框之间的差异,从而提升模型的平均精度。在绝缘子及缺陷数据集上,改进后的算法YOLOv9-DHM的平均检测精度(Mean Average Precision,mAP)提高至96.8%,相比于原始算法提高了2.2%,精确率和召回率分别提高至95.4%和94.5%。改进后的算法相比原始算法,平均检测精度有明显提升,证明了算法改进后的可行性。
文摘针对现有输电线路绝缘子缺陷检测模型在雨天复杂场景下识别效果差、推理速度慢等问题,在YOLOv7-tiny(you only look once version 7-tiny)的基础上提出了RID-YOLOv7(rain insulator detection-YOLOv7)轻量级雨天场景绝缘子缺陷检测模型。首先探索了坐标注意力机制(coordinate attention,CA)在主干特征提取网络中的最优嵌入位置,提升了模型对目标位置关键特征的提取能力;然后在颈部特征融合网络中引入了幻影混洗卷积(ghost shuffle convolution,GSConv)和幻影混洗跨级部分矢量化旋涡(vortex of vectorized ghost shuffle cross stage partial,VoV-GSCSP),大幅降低了推理时间;最后使用了明智交并比(wise intersection over union,WIoU)优化边界框定位损失函数,提高了模型收敛效率。结果表明,与原始YOLOv7-tiny相比,RID-YOLOv7模型的精确率、召回率和平均精确率均值分别提升了2.41%、5.44%和3.22%,推理速度为88.7帧/s,有效平衡了检测速度和精度。该模型适合对雨天场景下输电线路绝缘子缺陷进行实时检测。