期刊导航
期刊开放获取
cqvip
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于极限学习机的底层特征全参考彩色图像质量评价方法
被引量:
1
1
作者
马月梅
付浩
+2 位作者
刘国军
杨玲
魏立力
《南京师大学报(自然科学版)》
CAS
CSCD
北大核心
2022年第4期91-101,共11页
作为图像质量的监测和评价工具,图像质量评价(image quality assessment,IQA)在各种图像处理系统中发挥着重要的作用,理想的IQA方法应该与人类视觉系统(human visual system,HVS)相一致.目前HVS对图像的理解主要是依据图像的底层特征,...
作为图像质量的监测和评价工具,图像质量评价(image quality assessment,IQA)在各种图像处理系统中发挥着重要的作用,理想的IQA方法应该与人类视觉系统(human visual system,HVS)相一致.目前HVS对图像的理解主要是依据图像的底层特征,本文提出了一种新的全参考(full reference,FR)彩色图像IQA方法.首先,提取了结构对比度指标(structural contrast index,SCI)、梯度、局部二值模式(local binary pattern,LBP)和色度四类底层特征图,用于刻画图像的不同特征属性;其次,利用不同的特征池化策略对每类特征分别处理,将其组成一组相似特征向量作为图像质量的检测器并采用极限学习机(extreme learning machine,ELM)建立回归模型,得到客观的质量分数;最后,与目前流行的8种FR IQA方法在5个标准IQA数据库上进行数值实验.结果表明,该方法整体性能优于其他方法,能够有效地提高大多数失真类型的预测精度.
展开更多
关键词
彩色图像质量评价
底层特征
局部二值模式
梯
度
结构
对比度
指标
极限学习机
下载PDF
职称材料
题名
基于极限学习机的底层特征全参考彩色图像质量评价方法
被引量:
1
1
作者
马月梅
付浩
刘国军
杨玲
魏立力
机构
宁夏大学数学统计学院
出处
《南京师大学报(自然科学版)》
CAS
CSCD
北大核心
2022年第4期91-101,共11页
基金
国家自然科学基金项目(62061040)
宁夏区重点研发计划项目(2019BEG03056)
宁夏自然科学基金项目(2021AAC03039).
文摘
作为图像质量的监测和评价工具,图像质量评价(image quality assessment,IQA)在各种图像处理系统中发挥着重要的作用,理想的IQA方法应该与人类视觉系统(human visual system,HVS)相一致.目前HVS对图像的理解主要是依据图像的底层特征,本文提出了一种新的全参考(full reference,FR)彩色图像IQA方法.首先,提取了结构对比度指标(structural contrast index,SCI)、梯度、局部二值模式(local binary pattern,LBP)和色度四类底层特征图,用于刻画图像的不同特征属性;其次,利用不同的特征池化策略对每类特征分别处理,将其组成一组相似特征向量作为图像质量的检测器并采用极限学习机(extreme learning machine,ELM)建立回归模型,得到客观的质量分数;最后,与目前流行的8种FR IQA方法在5个标准IQA数据库上进行数值实验.结果表明,该方法整体性能优于其他方法,能够有效地提高大多数失真类型的预测精度.
关键词
彩色图像质量评价
底层特征
局部二值模式
梯
度
结构
对比度
指标
极限学习机
Keywords
color image quality assessment
low-level features
local binary pattern
gradient
structural contrast index
extreme learning machine
分类号
TP391.41 [自动化与计算机技术—计算机应用技术]
TP181 [自动化与计算机技术—计算机科学与技术]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于极限学习机的底层特征全参考彩色图像质量评价方法
马月梅
付浩
刘国军
杨玲
魏立力
《南京师大学报(自然科学版)》
CAS
CSCD
北大核心
2022
1
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部