The tribological properties of combinative addition of nano-MoS2 and nano-SiO2 to the base oil have been investigated with a reciprocating ball-on-plate tribotester for magnesium alloy-steel contacts. The results demo...The tribological properties of combinative addition of nano-MoS2 and nano-SiO2 to the base oil have been investigated with a reciprocating ball-on-plate tribotester for magnesium alloy-steel contacts. The results demonstrate that the optimum mass ratio of nano-SiO2 to nano-MoS2 is 0.25:0.75. The optimum combinative addition into the base oil reduces the friction coefficient by 43.8% and the surface roughness (Sa) by 31.7% when compared to that found with the base oil. Meanwhile, the combinative addition of nano-MoS2 and nano-SiO〉 in comparison with single nanoparticles addition, is more pronounced in terms of the lubrication film stability. The excellent tribological properties of the SiO2/MoS2 combinations are attributed to the formation of physical adsorption films and tribochemical products during the rubbing process and the micro-cooperation of various nano- particles with different shapes and lubrication mechanisms.展开更多
Herein, platinum nanoparticles-decorated molybdenum disulfide (PtNPs@MoS2) nanocomposite has been synthesized via a microwave-assisted hydrothermal method, which was characterized by transmission electron microscopy...Herein, platinum nanoparticles-decorated molybdenum disulfide (PtNPs@MoS2) nanocomposite has been synthesized via a microwave-assisted hydrothermal method, which was characterized by transmission electron microscopy (TEM) and powder X-ray diffraction (XRD). This MoSz-based nanocomposite modified glass carbon electrode (PtNPs@MoSz/GCE) exhibited excellent electrocatalytic activity toward dopamine (DA) and uric acid (UA) due to their synergistic effect. Two well-defined oxidation peaks of DA and UA were obtained at PtNPs@MoS2/GCE with a large peak separation of 160 mV (DA-UA), sug- gesting that the modified electrode could individually or simultaneously analyze DA and AA. Under the optimal conditions, the peak currents of DA and UA were linearly dependent on their concentrations in the range of 0.5-150 and 5-1000 gmol/L with detection limit of 0.17 and 0.98 gmol/L, respectively. The proposed MoSz-based sensor can also be employed to examine DA and UA in real samples with satisfactory results. Therefore, the PtNPs@MoS2 nanocomposite might offer a good possibil- ity for electrochemical sensing and other electrocatalytic applications.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.51171212)Chongqing Science and Technology Commission(Grant Nos.CSTC2012JJJQ50001,CSTC2013jcyj C60001&cstc2012gg B50003)+2 种基金the National Science and Technology Program of China(Grant No.2013DFA71070)the Fundamental Research Funds for the Central Universities(Grant No.CDJZR13138801)the Fundamental Research Funds for the Yangtze Normal University(Grant No.CJSF2010C025)
文摘The tribological properties of combinative addition of nano-MoS2 and nano-SiO2 to the base oil have been investigated with a reciprocating ball-on-plate tribotester for magnesium alloy-steel contacts. The results demonstrate that the optimum mass ratio of nano-SiO2 to nano-MoS2 is 0.25:0.75. The optimum combinative addition into the base oil reduces the friction coefficient by 43.8% and the surface roughness (Sa) by 31.7% when compared to that found with the base oil. Meanwhile, the combinative addition of nano-MoS2 and nano-SiO〉 in comparison with single nanoparticles addition, is more pronounced in terms of the lubrication film stability. The excellent tribological properties of the SiO2/MoS2 combinations are attributed to the formation of physical adsorption films and tribochemical products during the rubbing process and the micro-cooperation of various nano- particles with different shapes and lubrication mechanisms.
基金the National Basic Research Program of China (2012CB933301)the National Natural Science Foundation of China (21305070, 21475064)+3 种基金the Natural Science Foundation of Jiangsu Province (BK20130861)the Sci-Tech Support Plan of Jiangsu Province (BE2014719)Specialized Research Fund for the Doctoral Program of Higher Education of China (IRT1148, 20133223120013)the Priority Academic Program Development of Jiangsu Higher Education Institutions
文摘Herein, platinum nanoparticles-decorated molybdenum disulfide (PtNPs@MoS2) nanocomposite has been synthesized via a microwave-assisted hydrothermal method, which was characterized by transmission electron microscopy (TEM) and powder X-ray diffraction (XRD). This MoSz-based nanocomposite modified glass carbon electrode (PtNPs@MoSz/GCE) exhibited excellent electrocatalytic activity toward dopamine (DA) and uric acid (UA) due to their synergistic effect. Two well-defined oxidation peaks of DA and UA were obtained at PtNPs@MoS2/GCE with a large peak separation of 160 mV (DA-UA), sug- gesting that the modified electrode could individually or simultaneously analyze DA and AA. Under the optimal conditions, the peak currents of DA and UA were linearly dependent on their concentrations in the range of 0.5-150 and 5-1000 gmol/L with detection limit of 0.17 and 0.98 gmol/L, respectively. The proposed MoSz-based sensor can also be employed to examine DA and UA in real samples with satisfactory results. Therefore, the PtNPs@MoS2 nanocomposite might offer a good possibil- ity for electrochemical sensing and other electrocatalytic applications.