R.R.Egudo 和M.A.Hanson 在文[2]中讨论了如下一类多目标数学规划的对偶性其中f:R<sup>n</sup>→R<sup>k</sup>,g:R<sup>n</sup>→R<sup>m</sup> 是向量值函数,e=(1,1,…,1)<sup&...R.R.Egudo 和M.A.Hanson 在文[2]中讨论了如下一类多目标数学规划的对偶性其中f:R<sup>n</sup>→R<sup>k</sup>,g:R<sup>n</sup>→R<sup>m</sup> 是向量值函数,e=(1,1,…,1)<sup>T</sup> ∈R<sup>k</sup>,λ∈W<sup>++</sup>={ω|ω<sub>i</sub>】0,sum from i=1 to k ω<sub>i</sub>=1}。文[2]对多目标非凸规划(VP)和(VD)关于真有效解给出了弱对偶和强对偶定理。展开更多
In this paper we research the constrained qualification for Bilevel programming. We show that the usual constrained qualifications in nonlinear programming fail to hold for more general Bilevel Program, and then we gi...In this paper we research the constrained qualification for Bilevel programming. We show that the usual constrained qualifications in nonlinear programming fail to hold for more general Bilevel Program, and then we give a sufficient condition of “partial calmness” which is weak constrained qualification and can be satisfied for some Bilevel Programs.展开更多
文摘R.R.Egudo 和M.A.Hanson 在文[2]中讨论了如下一类多目标数学规划的对偶性其中f:R<sup>n</sup>→R<sup>k</sup>,g:R<sup>n</sup>→R<sup>m</sup> 是向量值函数,e=(1,1,…,1)<sup>T</sup> ∈R<sup>k</sup>,λ∈W<sup>++</sup>={ω|ω<sub>i</sub>】0,sum from i=1 to k ω<sub>i</sub>=1}。文[2]对多目标非凸规划(VP)和(VD)关于真有效解给出了弱对偶和强对偶定理。
文摘In this paper we research the constrained qualification for Bilevel programming. We show that the usual constrained qualifications in nonlinear programming fail to hold for more general Bilevel Program, and then we give a sufficient condition of “partial calmness” which is weak constrained qualification and can be satisfied for some Bilevel Programs.