期刊文献+

均衡约束数学规划的约束规格和最优性条件综述 被引量:3

Review on constraint qualifications and optimality conditions for mathematical programs with equilibrium constraints
下载PDF
导出
摘要 约束规格在约束优化问题的最优性条件中起着重要的作用,介绍了近几年国际上关于均衡约束数学规划(简记为MPEC)的约束规格以及最优性条件的研究成果,包括以下主要内容:(1)MPEC常用的约束规格(如线性无关约束规格(MPEC-LICQ)、Mangasarian-Fromovitz约束规格(MPEC-MFCQ)等)和新的约束规格(如恒秩约束规格、常数正线性相关约束规格等),以及它们之间的关系;(2)MPEC常用的稳定点;(3)MPEC的最优性条件.最后还对MPEC的约束规格和最优性条件的研究前景进行了探讨. This is a survey on constraint qualifications and optimality conditions for mathematical programs with equilibrium constraints (MPEC for short). Some important international research results on constraint qualifications and the corresponding optimality conditions for MPEC are introduced. The context included are as follows: (1) Some constraint qualifications in common use for MPEC (e.g., MPEC-LICQ, MPEC-MFCQ) and some latest developed constraint qualifications (e.g., constant rank constraint qualifications), and their relationships; (2) Various stationary points for MPEC; (3) Optimality conditions for MPEC. Finally, we discuss some future research perspectives of constraint qualifications and optimality conditions for MPEC.
出处 《运筹学学报》 CSCD 北大核心 2013年第3期73-85,共13页 Operations Research Transactions
基金 国家自然科学基金(No.11271086) 广西自然科学基金(No.2012GXNSFAA053007) 广西高等学校重点资助科研项目(No.201102ZD002) 广西硕士研究生科研创新项目(No.YCSZ2013011)
关键词 均衡约束 数学规划 约束规格 稳定点 最优性条件 equilibrium constraint, mathematical programs, constraint qualification,stationary points, optimality conditions
  • 相关文献

参考文献29

  • 1Luo Z Q, Pang J S, Ralph D. Mathematical Programs with Equilibrium Constraints [M]. Cambridge: Cambridge University Press. 1996. 被引量:1
  • 2Outrata J V, Kovara M, Zowe J. Nonsmooth approach to optimization problems with equi- librium constraints [M]//Noneonvex Optimization and its Applications, Dordreeht: Kluwer Aeademie Publishers, 1998. 被引量:1
  • 3Flegel M L, Kanzow C. Abadie-Type constraint qualification for mathematical programs with equilibrium constraints [J]. Journal of Optimization Theory and Applications, 2005, 124(3): 595-614. 被引量:1
  • 4Chen Y, Florian M. The nonlinear bilevel programming problem: formulations, regularity, and optimality conditions [J]. Optimization, i995, 32: 193-209. 被引量:1
  • 5Bazaraa M S, Sherali H D, Shetty C M. Nonliner Programming: Theory and Algorithms (3rd ed.) [M]. New York: John Wiley & Sons, 2006. 被引量:1
  • 6Fujiwara O, Han S P, Mangasarian O L. Local duality of nonlinear programs [J]. SIAM Journal on Control and Optimization, 1984, 22: 162-169. 被引量:1
  • 7Janin R. Directional derivative of the marginal function in nonlinear programming [J]. Mathe- matical Programming Study, 1984, 21: 110-126. 被引量:1
  • 8Qi L Q, Wei Z X. On the constant positive linear dependence condition and its application to SQP methods [J]. SIAM Journal on Optimization, 2000, 10: 963-981. 被引量:1
  • 9Minchenko L, Stakhovsji S. On relaxed constant rank regularity condition in mathematical programming [J]. Optimization, 2011, 60(4): 429-440. 被引量:1
  • 10Andreani R, Haeser G, Schuverdt M, et al. A relaxed constant positive linear dependence constraint qualification and applications [J]. Mathematical Programming, 2012, 135(1-2): 255- 273. 被引量:1

同被引文献11

引证文献3

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部