目的图像的显著性检测是将图像中最重要的、包含丰富信息的区域标记出来,并应用到图像分割、图像压缩、图像检索、目标识别等重要领域。针对现有研究方法显著性目标检测结果不完整以及单一依靠颜色差异检测方法的局限性,提出一种综合图...目的图像的显著性检测是将图像中最重要的、包含丰富信息的区域标记出来,并应用到图像分割、图像压缩、图像检索、目标识别等重要领域。针对现有研究方法显著性目标检测结果不完整以及单一依靠颜色差异检测方法的局限性,提出一种综合图像底层颜色对比特征图和图像颜色空间分布特征图的显著性检测方法,能够有效而完整地检测出图像中的显著性区域。方法本文方法结合了SLIC超像素分割和K-means聚类算法进行图像特征的提取。首先,对图像进行SLIC(simple linear iterative clustering)分割,根据像素块之间的颜色差异求取颜色对比特征图;其次,按照颜色特征对图像进行K-means聚类,依据空间分布紧凑性和颜色分布统一性计算每个类的初步颜色空间分布特征。由于聚类结果中不包含空间信息,本文将聚类后的结果映射到超像素分割的像素块上,进一步优化颜色空间分布图;最后,通过融合颜色对比显著图和图像颜色空间分布特征图得到最终的显著图。结果针对公开的图像测试数据库MSRA-1000,本文方法与当前几种流行的显著性检测算法进行了对比实验,实验结果表明,本文方法得到的显著性区域更准确、更完整。结论本文提出了一种简单有效的显著性检测方法,结合颜色对比特征图和图像颜色空间分布特征图可以准确的检测出显著性区域。该结果可用于目标检测等实际问题,但该方法存在一定的不足,对于背景色彩过于丰富且与特征区域有近似颜色的图像,该方法得到的结果有待改进。今后对此算法的优化更加侧重于通用性。展开更多
针对传统船舶图像去噪算法难以对图像的边缘细节进行保留和分析,以及传统非局部均值去噪算法相似框选择困难等问题,提出基于简单线性迭代聚类(simple linear iterative clustering,SLIC)超像素分割的非局部均值船舶图像去噪算法。通过S...针对传统船舶图像去噪算法难以对图像的边缘细节进行保留和分析,以及传统非局部均值去噪算法相似框选择困难等问题,提出基于简单线性迭代聚类(simple linear iterative clustering,SLIC)超像素分割的非局部均值船舶图像去噪算法。通过SLIC算法对图像进行分割处理,界定图像的纹理区域和平滑区域;使用相似框搜索和匹配策略,提升匹配效果,并适当保留更多边缘细节,从而改善图像去噪的效果。实验结果表明,所提出的算法相较于其他传统的船舶图像去噪算法不仅能很好地保留船舶图像的边缘细节特点,而且能在一定程度上提高船舶图像的峰值信噪比,具有良好的去噪效果,可以用于智能航海领域船舶图像的去噪。展开更多
由于简单线性迭代聚类(simple linear iterative clustering,SLIC)算法对含有相干斑噪声的合成孔径雷达(synthetic aperture radar,SAR)图像边缘分割不理想,提出了一种基于变差系数(coefficient of variation,CV)的SAR图像超像素分割算...由于简单线性迭代聚类(simple linear iterative clustering,SLIC)算法对含有相干斑噪声的合成孔径雷达(synthetic aperture radar,SAR)图像边缘分割不理想,提出了一种基于变差系数(coefficient of variation,CV)的SAR图像超像素分割算法。该算法首先对SAR图像进行各项异性高斯平滑预处理,使得图像相干斑得到平滑的同时边缘信息不被破坏;其次,采用CV估计边缘信息,使得图像的同质区与边缘区更容易区分;最后用加入边缘信息的SLIC算法进行聚类,生成超像素。实验结果表明:该算法在SAR图像分割下与3种经典超像素算法相比,其召回率至少提高了5%,且超像素个数大于400时,欠分割错误率降低了2%。该算法使得SAR图像超像素分割的准确度提高,其边缘和图像真实边缘更加贴切。展开更多
针对现有的交互式图像分割算法在处理高分辨率图像时仍不够高效的问题,提出了一种基于简单线性迭代聚类(simple linear iterative clustering,SLIC)与Delaunay图割的交互式图像分割算法。使用一种简化但是高效的SLIC算法将图像分割为多...针对现有的交互式图像分割算法在处理高分辨率图像时仍不够高效的问题,提出了一种基于简单线性迭代聚类(simple linear iterative clustering,SLIC)与Delaunay图割的交互式图像分割算法。使用一种简化但是高效的SLIC算法将图像分割为多个在感知上有意义的原子区域,并提取这些区域的代表像素点;对处在背景矩形框内的代表像素点进行Delaunay三角剖分,构建图结构;最后利用最小割最大流算法将图中的节点分为两部分,并将这些节点对应为相应的原子区域,达到将图像分割为前景和背景的目的。与其他交互式图像分割算法进行实验对比,结果表明所提算法在计算效率上有较大提升,并更为准确。展开更多
文摘目的图像的显著性检测是将图像中最重要的、包含丰富信息的区域标记出来,并应用到图像分割、图像压缩、图像检索、目标识别等重要领域。针对现有研究方法显著性目标检测结果不完整以及单一依靠颜色差异检测方法的局限性,提出一种综合图像底层颜色对比特征图和图像颜色空间分布特征图的显著性检测方法,能够有效而完整地检测出图像中的显著性区域。方法本文方法结合了SLIC超像素分割和K-means聚类算法进行图像特征的提取。首先,对图像进行SLIC(simple linear iterative clustering)分割,根据像素块之间的颜色差异求取颜色对比特征图;其次,按照颜色特征对图像进行K-means聚类,依据空间分布紧凑性和颜色分布统一性计算每个类的初步颜色空间分布特征。由于聚类结果中不包含空间信息,本文将聚类后的结果映射到超像素分割的像素块上,进一步优化颜色空间分布图;最后,通过融合颜色对比显著图和图像颜色空间分布特征图得到最终的显著图。结果针对公开的图像测试数据库MSRA-1000,本文方法与当前几种流行的显著性检测算法进行了对比实验,实验结果表明,本文方法得到的显著性区域更准确、更完整。结论本文提出了一种简单有效的显著性检测方法,结合颜色对比特征图和图像颜色空间分布特征图可以准确的检测出显著性区域。该结果可用于目标检测等实际问题,但该方法存在一定的不足,对于背景色彩过于丰富且与特征区域有近似颜色的图像,该方法得到的结果有待改进。今后对此算法的优化更加侧重于通用性。
文摘针对传统船舶图像去噪算法难以对图像的边缘细节进行保留和分析,以及传统非局部均值去噪算法相似框选择困难等问题,提出基于简单线性迭代聚类(simple linear iterative clustering,SLIC)超像素分割的非局部均值船舶图像去噪算法。通过SLIC算法对图像进行分割处理,界定图像的纹理区域和平滑区域;使用相似框搜索和匹配策略,提升匹配效果,并适当保留更多边缘细节,从而改善图像去噪的效果。实验结果表明,所提出的算法相较于其他传统的船舶图像去噪算法不仅能很好地保留船舶图像的边缘细节特点,而且能在一定程度上提高船舶图像的峰值信噪比,具有良好的去噪效果,可以用于智能航海领域船舶图像的去噪。
文摘由于简单线性迭代聚类(simple linear iterative clustering,SLIC)算法对含有相干斑噪声的合成孔径雷达(synthetic aperture radar,SAR)图像边缘分割不理想,提出了一种基于变差系数(coefficient of variation,CV)的SAR图像超像素分割算法。该算法首先对SAR图像进行各项异性高斯平滑预处理,使得图像相干斑得到平滑的同时边缘信息不被破坏;其次,采用CV估计边缘信息,使得图像的同质区与边缘区更容易区分;最后用加入边缘信息的SLIC算法进行聚类,生成超像素。实验结果表明:该算法在SAR图像分割下与3种经典超像素算法相比,其召回率至少提高了5%,且超像素个数大于400时,欠分割错误率降低了2%。该算法使得SAR图像超像素分割的准确度提高,其边缘和图像真实边缘更加贴切。
文摘在雾霾天气下,由于空气中的浮尘等大气颗粒物对光线进行了散射吸收,造成成像设备捕捉到的图片的质量严重下降。针对雾霾天气下暗通道先验(dark channel prior,DCP)算法的图像复原方法中的边缘细节丢失、明亮区域使大气光估计失效、场景深度突变区域透射率计算不准确等问题,提出一种基于均值标准差与加权透射率(Mean-Standard Deviation and Weighted Transmission,MSD-WT)的图像去雾方法。对大气光估计方法进行改进,首先在HSV空间中提取图像的亮度分量,然后使用简单线性迭代聚类(simple linear iterative clustering,SLIC)对V空间图像和暗通道图像进行图像融合,避免小面积明亮区域对整体大气光估计造成影响。对透射率估计方法进行改进,在景物边缘处使用带阈值的均值标准差来判断是否为场景深度突变区域,在不同区域内使用加权的方法分类计算场景深度突变处的透射率。仿真结果表明:该方法计算的大气光值和透射率值更加准确,在边缘细节信息保留、去除边缘光晕效应和图像真实方面有较好的效果。
文摘针对现有的交互式图像分割算法在处理高分辨率图像时仍不够高效的问题,提出了一种基于简单线性迭代聚类(simple linear iterative clustering,SLIC)与Delaunay图割的交互式图像分割算法。使用一种简化但是高效的SLIC算法将图像分割为多个在感知上有意义的原子区域,并提取这些区域的代表像素点;对处在背景矩形框内的代表像素点进行Delaunay三角剖分,构建图结构;最后利用最小割最大流算法将图中的节点分为两部分,并将这些节点对应为相应的原子区域,达到将图像分割为前景和背景的目的。与其他交互式图像分割算法进行实验对比,结果表明所提算法在计算效率上有较大提升,并更为准确。