期刊文献+

利用词袋模型检测建筑物顶面损毁区域 被引量:11

Detection of Damaged Areas Based on Visual Bag-of-Words Model from Aerial Remote Sensing Images
原文传递
导出
摘要 针对航空影像中已分割出的建筑物顶面,提出了一种利用视觉词袋模型检测建筑物顶面损毁区域的方法。该方法首先利用简单线性迭代聚类方法对建筑物顶面进行超像素分割,然后对超像素区域利用颜色和梯度方向直方图特征构建视觉词袋模型,最后使用支持向量机(support vector machine,SVM)对超像素区域中的损毁区域进行检测。实验结果表明,该方法能有效判定建筑物顶面损毁区域,对提高建筑物整体损毁检测精度具有重要意义。 An approach for damaged rooftops areas detection is proposed based on visual bag-of-words model.First,the building rooftop is segmented into different superpixel areas using simple linear iterative clustering(SLIC) method,then features of color and histograms of oriented gradients are extracted from each superpixel area and the visual bag-of-words(BoW) model is employed to build the semantic feature vectors of damaged and non-damaged area.Finally,damaged and non-damaged parts of rooftop superpixel areas are discriminated using SVM.Experimental results show that the proposed method can be feasible and effective for detection of damaged rooftop areas,which is an important significance for improving the accuracy of overall building damaged detection.
作者 涂继辉 眭海刚 冯文卿 孙开敏 TU Jihui1,2, SUI Haigang2, FENG Wenqing2, SUN Kaimin2(1. Electronics and Information School, Yangtze University, Jingzhou 434023, China; 2.State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan University, Wuhan 430079, Chin)
出处 《武汉大学学报(信息科学版)》 EI CSCD 北大核心 2018年第5期691-696,共6页 Geomatics and Information Science of Wuhan University
基金 国家重点研发计划(2016YFB0502603) 国家自然基金(41471354)~~
关键词 建筑物顶面损毁检测 视觉词袋模型 超像素分割 简单线性迭代聚类(SLIC) SVM detection of damaged rooftop areas visual bag-of-words model superpixel segmentation SLIC SVM
  • 相关文献

参考文献3

二级参考文献54

  • 1李德仁.移动测量技术及其应用[J].地理空间信息,2006,4(4):1-5. 被引量:187
  • 2李德仁,胡庆武.基于可量测实景影像的空间信息服务[J].武汉大学学报(信息科学版),2007,32(5):377-380. 被引量:77
  • 3REN Xiao-fimg, MAI,IK J. Learning a classification model for seg- mentation[ C ]//Proc of the 9th IEEE International Conference on Computer Vision. Washington DC :IEEE Computer Society ,2(X)3 : 10-17. 被引量:1
  • 4FEIZENSWALB P F, HUTFENLOCHER D P. Efficient graph-based image segmentation [ J ]. International Journal of Computer Vision, 2004, 59(2):167-181. 被引量:1
  • 5SHI Jian-bo, MALIK J. Normalized cuts and image segmentation [C]//Proc of IEEE Computer Society Conference on Computer Vi-sion and Pattern Recognition. Washingtan DC:IEEE Camputer Socie- ty, 1997:731-737. 被引量:1
  • 6SHI Jian-bo, MAL1K J. Normalized cuts and image segmentation[ J ]. IEEE Trans on Pattern Analysis and Machine Intelligence, 2000, 22(8) :888-905. 被引量:1
  • 7MOORE A, PRINCE S, WARRELI. J, et al. Superpixel lattices [ C]//Proc of IEEE Conference on Computer Vision and Pattern Rec- ognition. 2008 : 1-8. 被引量:1
  • 8LIU Ming-yu, TUZEL O, RAMALINGAM S,et al. Entropy rate su- perpixel segmentation [ C ]//Proc of IEEE Conference on Computer Vision and Pattern Recognition. 2011:2097-2104. 被引量:1
  • 9VINCENT L, SOILLE P. Watersheds in digital spaces: an efficient algoritlml based on inlmeision simulations[ J]. IEEE Trans on Pat- tern Analysis and Machine Intelligence, 1991, 13 (6) : 583-598. 被引量:1
  • 10COMANICIU D, MEER P. Mean shift: a rnhust approrah toward fea- ture space analysis[ J ]. IEEE Trans on Pattern Analysis and Ma- chine Intelligence, 2002, 24(5): 603-619. 被引量:1

共引文献225

同被引文献116

引证文献11

二级引证文献49

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部