The structure of global lithosphere is very important to the scientific researches of tectonic movement, geodynamic process, mantle convection, resource exploration, and disaster prevention and reduction. Three-dimens...The structure of global lithosphere is very important to the scientific researches of tectonic movement, geodynamic process, mantle convection, resource exploration, and disaster prevention and reduction. Three-dimensional (3D) spatial modelling and visualization is an effective tool for lithosphere researches. However, both the isoline/profile methods and the Euclidean-based 3D modelling methods cannot meet the requirement of real 3D modeling of global lithosphere, whereas the recently developed global 3D grid methods have some defects on grid design, such as grid shrinkage, overlapping, non-orthogonality, and nonlatitude-longitude consistency. In this paper, Spheroid Degenerated-Octree Grid (SDOG), a non-overlapping, non-shrinking, orthogonal, latitude-longitude consistent grid in the spheroidal manifold space, was chosen as the basic grid for global lithosphere 3D modeling and visualization. The SDOG-based methods of spatial representation and modelling of lithosphere were proposed. A multi-scale model of lithosphere was designed, and the multi-scale modeling and multi-mode visualization were realized at the full advantages of SDOG in multi-hierarchical and multi-resolution and the properties of lithosphere in multi-semantic. It shows that (1) the SDOG-based method has not only overcome the defects of the current global 3D grid, but also reflected the spherical features of lithosphere more realistically and naturally than the traditional methods, providing a novel solution for global modeling, numeric simulating, and data sharing of lithosphere; and (2) more detailed plates division, more precise geo-layer structure, plates boarder and surface concave-convex, and more rich lithosphere properties are revealed as the scale-model moves on.展开更多
青藏高原的生态环境面临着气候变暖和人类活动增加的双重压力,增加了土壤侵蚀风险。沟蚀是土壤侵蚀最为剧烈的表现形式,为调查当地沟蚀现状和主控因素,该研究选择拉萨河流域作为代表,通过野外调查和遥感解译建立2171个样点,并首次基于...青藏高原的生态环境面临着气候变暖和人类活动增加的双重压力,增加了土壤侵蚀风险。沟蚀是土壤侵蚀最为剧烈的表现形式,为调查当地沟蚀现状和主控因素,该研究选择拉萨河流域作为代表,通过野外调查和遥感解译建立2171个样点,并首次基于最优尺度回归、地理探测器和两者的组合共4种方法对15个影响沟蚀的因子及其分级/分类的重要性和沟蚀发生风险进行了探测。结果发现:1)在最优尺度回归中,因子系数前三位分别为海拔(0.442)、土壤类型(0.168)和归一化植被指数(0.156);在地理探测器中,海拔(0.263)、土壤类型(0.251)和人类足迹(0.174)排在前三位。2)最优尺度回归和地理探测器的受试者工作特征曲线下面积(Area Under Curve,AUC)值分别为0.899和0.833,两种组合方法AUC值分别为0.866和0.848,各方法探测效果均良好,都适用于空间建模。3)拉萨河流域有9.52%~13.97%的区域有着非常高的沟蚀风险,主要集中在拉萨河下游河谷两岸和当雄盆地等相对低海拔地区。研究结果可为青藏高原生态安全屏障建设和水土保持工作提供参考。展开更多
基金supported by National Basic Research Progam of China(Grant No. 2011CB707102)National Natural Science Foundation of China (Grant No. 40930104)
文摘The structure of global lithosphere is very important to the scientific researches of tectonic movement, geodynamic process, mantle convection, resource exploration, and disaster prevention and reduction. Three-dimensional (3D) spatial modelling and visualization is an effective tool for lithosphere researches. However, both the isoline/profile methods and the Euclidean-based 3D modelling methods cannot meet the requirement of real 3D modeling of global lithosphere, whereas the recently developed global 3D grid methods have some defects on grid design, such as grid shrinkage, overlapping, non-orthogonality, and nonlatitude-longitude consistency. In this paper, Spheroid Degenerated-Octree Grid (SDOG), a non-overlapping, non-shrinking, orthogonal, latitude-longitude consistent grid in the spheroidal manifold space, was chosen as the basic grid for global lithosphere 3D modeling and visualization. The SDOG-based methods of spatial representation and modelling of lithosphere were proposed. A multi-scale model of lithosphere was designed, and the multi-scale modeling and multi-mode visualization were realized at the full advantages of SDOG in multi-hierarchical and multi-resolution and the properties of lithosphere in multi-semantic. It shows that (1) the SDOG-based method has not only overcome the defects of the current global 3D grid, but also reflected the spherical features of lithosphere more realistically and naturally than the traditional methods, providing a novel solution for global modeling, numeric simulating, and data sharing of lithosphere; and (2) more detailed plates division, more precise geo-layer structure, plates boarder and surface concave-convex, and more rich lithosphere properties are revealed as the scale-model moves on.
文摘青藏高原的生态环境面临着气候变暖和人类活动增加的双重压力,增加了土壤侵蚀风险。沟蚀是土壤侵蚀最为剧烈的表现形式,为调查当地沟蚀现状和主控因素,该研究选择拉萨河流域作为代表,通过野外调查和遥感解译建立2171个样点,并首次基于最优尺度回归、地理探测器和两者的组合共4种方法对15个影响沟蚀的因子及其分级/分类的重要性和沟蚀发生风险进行了探测。结果发现:1)在最优尺度回归中,因子系数前三位分别为海拔(0.442)、土壤类型(0.168)和归一化植被指数(0.156);在地理探测器中,海拔(0.263)、土壤类型(0.251)和人类足迹(0.174)排在前三位。2)最优尺度回归和地理探测器的受试者工作特征曲线下面积(Area Under Curve,AUC)值分别为0.899和0.833,两种组合方法AUC值分别为0.866和0.848,各方法探测效果均良好,都适用于空间建模。3)拉萨河流域有9.52%~13.97%的区域有着非常高的沟蚀风险,主要集中在拉萨河下游河谷两岸和当雄盆地等相对低海拔地区。研究结果可为青藏高原生态安全屏障建设和水土保持工作提供参考。