特高压直流(UHVDC)输电线路地面离子流场的大小是检验电磁环境是否超标的重要判据,对不同风速条件下的地面离子流场的分布进行了计算研究。针对离子流场的计算,提出一种改进迭代上流有限元方法,建立了考虑风速影响的离子流场模型。研究...特高压直流(UHVDC)输电线路地面离子流场的大小是检验电磁环境是否超标的重要判据,对不同风速条件下的地面离子流场的分布进行了计算研究。针对离子流场的计算,提出一种改进迭代上流有限元方法,建立了考虑风速影响的离子流场模型。研究了不同风速对±800 k V输电线路离子流场分布规律的影响。研究表明,地面最大合成场强和离子流密度随风速的增大而增加明显,且风速会使其发生一定偏移。考虑风速为8 m/s时,地面最大合成场强比无风增加了12.64 k V/m,且地面最大离子流密度是无风时的2.65倍。水平风速越大地面合成场强和离子流密度的分布曲线和峰值往背风向偏移越严重,空间其他较远处的合成场强和电荷密度变化不大,且空间合成场强与电荷密度的最大值主要分布于导线周围空间。展开更多
交直流同塔线路混合电场是决定导线对地高度和走廊宽度从而进行线路优化设计的重要因素。由于其地面横向分布是交流分量和直流分量共同作用的结果,因此其分布特性与两者的叠加和分布特点有着密切的联系。以两回330 k V、750 k V交流线...交直流同塔线路混合电场是决定导线对地高度和走廊宽度从而进行线路优化设计的重要因素。由于其地面横向分布是交流分量和直流分量共同作用的结果,因此其分布特性与两者的叠加和分布特点有着密切的联系。以两回330 k V、750 k V交流线路分别与单回?1100 k V直流线路同塔架设为例,分析了交流线路在不同布置方式与相序排列方式下地面混合电场的分布特性与规律,并据此计算了导线对地最小高度和走廊宽度。结果表明,根据混合电场交、直分量的横向衰减特性,从走廊中心向外,地面混合电场可分为交流分量占主导的"交流区",交、直流分量比例相当的"混合过渡区"以及直流分量占主导的"直流区",为保证地面交、直流分量"错峰"布置,两回交流线路应采用垂直或倒三角排布方式,此时导线最小对地高度按照交流线路单独运行时的情况设计即可。当交流为750 kV线路时,走廊宽度主要由交流电场控制;交流为330 kV线路时,走廊宽度则由交直流电场分量共同控制。最终推荐采用垂直排布的相序6和倒三角排布的相序4两种布置方式。展开更多
安装屏蔽线是限制特高压直流线路地面电场与离子流的一种有效措施。由于空间电荷的存在,屏蔽线的表面电场强度会被明显增强,因此需要通过合成电场而非标称电场判断屏蔽线的电晕情况。采用区域分解法对屏蔽线的屏蔽效果进行定量分析,在...安装屏蔽线是限制特高压直流线路地面电场与离子流的一种有效措施。由于空间电荷的存在,屏蔽线的表面电场强度会被明显增强,因此需要通过合成电场而非标称电场判断屏蔽线的电晕情况。采用区域分解法对屏蔽线的屏蔽效果进行定量分析,在计算迭代过程中判断屏蔽线电晕的变化情况,考虑了屏蔽线电晕对于离子流场的影响。分别采用通量线法、不考虑电晕的有限元法和文中方法对地面电场与离子流进行预测,与实验缩尺模型测量结果进行对比,并对不同方法的计算差异进行比较分析。结果表明,屏蔽线电晕产生的异极性电荷会与极导线产生的离子流发生复合,且产生的地面场强方向与原电场方向相反,从而增强其对地面电场的屏蔽效果,计算方法中应当考虑屏蔽线的电晕效应。之后,针对一条典型的?800 k V特高压直流线路,分析了屏蔽线的布置方式对屏蔽效果的影响。展开更多
An upwind finite element(FE)based algorithm to calculate the ion flow field in the vicinity of multi-circuit DC transmission lines is described.The initial value estimation and boundary condition are optimized,so deta...An upwind finite element(FE)based algorithm to calculate the ion flow field in the vicinity of multi-circuit DC transmission lines is described.The initial value estimation and boundary condition are optimized,so details of the transmission lines such as bundle conductors and ground wires can be taken into account in the simulation model.Comparison between measured and computed ground level total electrical field and ion current density shows satisfactory agreement.The ion flow field of a ±500 kV HVDC project with bipolar lines on the same tower is simulated.The total electrical field and ion current density on ground level are compared among different line arrangements.展开更多
为探究雾霾对高压直流(HVDC)输电线路电晕离子流场的影响规律,提出了雾霾对HVDC输电线路电晕离子流场影响的计算方法。考虑雾霾微粒的荷电特性和湿度对电晕起晕的作用,采用有限元方法计算了±800 k V线路在各种雾霾污染等级下的合...为探究雾霾对高压直流(HVDC)输电线路电晕离子流场的影响规律,提出了雾霾对HVDC输电线路电晕离子流场影响的计算方法。考虑雾霾微粒的荷电特性和湿度对电晕起晕的作用,采用有限元方法计算了±800 k V线路在各种雾霾污染等级下的合成电场强度和离子流密度。计算结果表明:随着雾霾污染程度增加,地面合成电场强度和离子流密度相对于正常天气时的值有所增大,在较大污染程度下,其最大值的增长率随污染浓度增大呈近似线性关系;高湿度雾霾状况下的电晕离子流场随污染程度变化比低湿度雾霾和干霾下更加明显。分析认为:雾霾条件下湿度对电晕起始电场强度的影响及空间悬浮颗粒的荷电行为是地面合成电场和离子流密度变化的主要原因,离子迁移率的减小抑制了地面离子流密度的增大。研究思路对考虑雾霾因素时HVDC输电线路规划设计中电晕效应的分析具有参考价值。展开更多
文摘特高压直流(UHVDC)输电线路地面离子流场的大小是检验电磁环境是否超标的重要判据,对不同风速条件下的地面离子流场的分布进行了计算研究。针对离子流场的计算,提出一种改进迭代上流有限元方法,建立了考虑风速影响的离子流场模型。研究了不同风速对±800 k V输电线路离子流场分布规律的影响。研究表明,地面最大合成场强和离子流密度随风速的增大而增加明显,且风速会使其发生一定偏移。考虑风速为8 m/s时,地面最大合成场强比无风增加了12.64 k V/m,且地面最大离子流密度是无风时的2.65倍。水平风速越大地面合成场强和离子流密度的分布曲线和峰值往背风向偏移越严重,空间其他较远处的合成场强和电荷密度变化不大,且空间合成场强与电荷密度的最大值主要分布于导线周围空间。
文摘交直流同塔线路混合电场是决定导线对地高度和走廊宽度从而进行线路优化设计的重要因素。由于其地面横向分布是交流分量和直流分量共同作用的结果,因此其分布特性与两者的叠加和分布特点有着密切的联系。以两回330 k V、750 k V交流线路分别与单回?1100 k V直流线路同塔架设为例,分析了交流线路在不同布置方式与相序排列方式下地面混合电场的分布特性与规律,并据此计算了导线对地最小高度和走廊宽度。结果表明,根据混合电场交、直分量的横向衰减特性,从走廊中心向外,地面混合电场可分为交流分量占主导的"交流区",交、直流分量比例相当的"混合过渡区"以及直流分量占主导的"直流区",为保证地面交、直流分量"错峰"布置,两回交流线路应采用垂直或倒三角排布方式,此时导线最小对地高度按照交流线路单独运行时的情况设计即可。当交流为750 kV线路时,走廊宽度主要由交流电场控制;交流为330 kV线路时,走廊宽度则由交直流电场分量共同控制。最终推荐采用垂直排布的相序6和倒三角排布的相序4两种布置方式。
文摘安装屏蔽线是限制特高压直流线路地面电场与离子流的一种有效措施。由于空间电荷的存在,屏蔽线的表面电场强度会被明显增强,因此需要通过合成电场而非标称电场判断屏蔽线的电晕情况。采用区域分解法对屏蔽线的屏蔽效果进行定量分析,在计算迭代过程中判断屏蔽线电晕的变化情况,考虑了屏蔽线电晕对于离子流场的影响。分别采用通量线法、不考虑电晕的有限元法和文中方法对地面电场与离子流进行预测,与实验缩尺模型测量结果进行对比,并对不同方法的计算差异进行比较分析。结果表明,屏蔽线电晕产生的异极性电荷会与极导线产生的离子流发生复合,且产生的地面场强方向与原电场方向相反,从而增强其对地面电场的屏蔽效果,计算方法中应当考虑屏蔽线的电晕效应。之后,针对一条典型的?800 k V特高压直流线路,分析了屏蔽线的布置方式对屏蔽效果的影响。
基金Project Supported by China11th Five-year National Key Technologies R&D Program(2006BAA02A20)
文摘An upwind finite element(FE)based algorithm to calculate the ion flow field in the vicinity of multi-circuit DC transmission lines is described.The initial value estimation and boundary condition are optimized,so details of the transmission lines such as bundle conductors and ground wires can be taken into account in the simulation model.Comparison between measured and computed ground level total electrical field and ion current density shows satisfactory agreement.The ion flow field of a ±500 kV HVDC project with bipolar lines on the same tower is simulated.The total electrical field and ion current density on ground level are compared among different line arrangements.
文摘为探究雾霾对高压直流(HVDC)输电线路电晕离子流场的影响规律,提出了雾霾对HVDC输电线路电晕离子流场影响的计算方法。考虑雾霾微粒的荷电特性和湿度对电晕起晕的作用,采用有限元方法计算了±800 k V线路在各种雾霾污染等级下的合成电场强度和离子流密度。计算结果表明:随着雾霾污染程度增加,地面合成电场强度和离子流密度相对于正常天气时的值有所增大,在较大污染程度下,其最大值的增长率随污染浓度增大呈近似线性关系;高湿度雾霾状况下的电晕离子流场随污染程度变化比低湿度雾霾和干霾下更加明显。分析认为:雾霾条件下湿度对电晕起始电场强度的影响及空间悬浮颗粒的荷电行为是地面合成电场和离子流密度变化的主要原因,离子迁移率的减小抑制了地面离子流密度的增大。研究思路对考虑雾霾因素时HVDC输电线路规划设计中电晕效应的分析具有参考价值。