1 矢量小波函数方程Ψ(x)=sum from k=0 to N(C_kΨ(2x-k)) (1)称为尺度方程,它在多尺度分析中起着举足轻重的作用。方程(1)的系数可以是实数亦可以是复数,(1)式的解Ψ(x)称为尺度函数。若式(1)有一个可积解Ψ(x),且是L^2(R)中的一个规...1 矢量小波函数方程Ψ(x)=sum from k=0 to N(C_kΨ(2x-k)) (1)称为尺度方程,它在多尺度分析中起着举足轻重的作用。方程(1)的系数可以是实数亦可以是复数,(1)式的解Ψ(x)称为尺度函数。若式(1)有一个可积解Ψ(x),且是L^2(R)中的一个规范正交基,则从下式Ψ(x)=sum from k=0 to N(-1)~k(C_(N-k)Ψ(2x-k)) (2)展开更多
This paper presents a two-step explicit method of order four for solving aclass of linear periodic initial value problems. At each computational step, only tworight function evaluations and one derivative evaluation a...This paper presents a two-step explicit method of order four for solving aclass of linear periodic initial value problems. At each computational step, only tworight function evaluations and one derivative evaluation are employed. Basing on aspecial vector operation, the method can be extended to the vector-applicable in multi-dimensional space.展开更多
文摘1 矢量小波函数方程Ψ(x)=sum from k=0 to N(C_kΨ(2x-k)) (1)称为尺度方程,它在多尺度分析中起着举足轻重的作用。方程(1)的系数可以是实数亦可以是复数,(1)式的解Ψ(x)称为尺度函数。若式(1)有一个可积解Ψ(x),且是L^2(R)中的一个规范正交基,则从下式Ψ(x)=sum from k=0 to N(-1)~k(C_(N-k)Ψ(2x-k)) (2)
文摘This paper presents a two-step explicit method of order four for solving aclass of linear periodic initial value problems. At each computational step, only tworight function evaluations and one derivative evaluation are employed. Basing on aspecial vector operation, the method can be extended to the vector-applicable in multi-dimensional space.