In this paper we study urn model, using some available estimates of successes probabilities, and adding particle parameter, we establish adaptive models. We obtain some strong convergence theorems, rates of convergenc...In this paper we study urn model, using some available estimates of successes probabilities, and adding particle parameter, we establish adaptive models. We obtain some strong convergence theorems, rates of convergence, asymptotic normality of components in the urn, and estimates. With these asymptotical results, we show that the adaptive designs given in this paper are asymptotically optimal designs.展开更多
This paper studies a class of variational problems which involving both bulk and surfaceenergies. The bulk energy is of Dirichlet type though it can be in very general forms allowingunknowns to be scalar or vectors.Th...This paper studies a class of variational problems which involving both bulk and surfaceenergies. The bulk energy is of Dirichlet type though it can be in very general forms allowingunknowns to be scalar or vectors.The surface energy is an arbitrary elliptic parametric integralwhich is defined on a free interface. One also allows other constraints such as volumes of partitioning sets. One establishes the existence and regularity theory, in particular, the regularityof the free interface of such problems.展开更多
基金This work is supported by the National Science Foundation (No.10271001) of China.
文摘In this paper we study urn model, using some available estimates of successes probabilities, and adding particle parameter, we establish adaptive models. We obtain some strong convergence theorems, rates of convergence, asymptotic normality of components in the urn, and estimates. With these asymptotical results, we show that the adaptive designs given in this paper are asymptotically optimal designs.
文摘This paper studies a class of variational problems which involving both bulk and surfaceenergies. The bulk energy is of Dirichlet type though it can be in very general forms allowingunknowns to be scalar or vectors.The surface energy is an arbitrary elliptic parametric integralwhich is defined on a free interface. One also allows other constraints such as volumes of partitioning sets. One establishes the existence and regularity theory, in particular, the regularityof the free interface of such problems.