设 X 为一个 BCI-代数,N,H 为 X 的理想,A 为 X 的子代数,X/N 为通常意义下的商代数,C_0为 X/N 的常元,C_0(?)H(?)N(?)A.今A/N={C_x∈X/N|x∈A}本文主要证明了以下几个结果:i)X/N=X/H;ii)A/N(?)A/N;iii)当 A 还是 X 的理想时,A/N=A/N.
In this paper, the classical Galois theory to the H*-Galois case is developed. Let H be a semisimple and cosemisimple Hopf algebra over a field k, A a left H-module algebra, and A/An a right H*-Galois extension. The...In this paper, the classical Galois theory to the H*-Galois case is developed. Let H be a semisimple and cosemisimple Hopf algebra over a field k, A a left H-module algebra, and A/An a right H*-Galois extension. The authors prove that, if An is a separable kalgebra, then for any right coideal subalgebra B of H, the B-invariants AB = {a ∈ A | b · a = ε(b)a, Ab ε B} is a separable k-algebra. They also establish a Galois connection between right coideal subalgebras of H and separable subalgebras of A containing AH as in the classical case. The results are applied to the case H = (kG)* for a finite group G to get a Galois 1-1 correspondence.展开更多
文摘设 X 为一个 BCI-代数,N,H 为 X 的理想,A 为 X 的子代数,X/N 为通常意义下的商代数,C_0为 X/N 的常元,C_0(?)H(?)N(?)A.今A/N={C_x∈X/N|x∈A}本文主要证明了以下几个结果:i)X/N=X/H;ii)A/N(?)A/N;iii)当 A 还是 X 的理想时,A/N=A/N.
基金supported by the National Natural Science Foundation of China(No.11331006)
文摘In this paper, the classical Galois theory to the H*-Galois case is developed. Let H be a semisimple and cosemisimple Hopf algebra over a field k, A a left H-module algebra, and A/An a right H*-Galois extension. The authors prove that, if An is a separable kalgebra, then for any right coideal subalgebra B of H, the B-invariants AB = {a ∈ A | b · a = ε(b)a, Ab ε B} is a separable k-algebra. They also establish a Galois connection between right coideal subalgebras of H and separable subalgebras of A containing AH as in the classical case. The results are applied to the case H = (kG)* for a finite group G to get a Galois 1-1 correspondence.