针对多物种鸟声识别中多物种鸟声样本不足的问题,尝试采用单物种鸟声样本训练多物种鸟声识别模型,并提出一种基于特征迁移的多物种鸟声识别方法。该方法引入特征迁移学习算法,利用最大均值差异(Maximum mean discrepancy,MMD)度量鸟声...针对多物种鸟声识别中多物种鸟声样本不足的问题,尝试采用单物种鸟声样本训练多物种鸟声识别模型,并提出一种基于特征迁移的多物种鸟声识别方法。该方法引入特征迁移学习算法,利用最大均值差异(Maximum mean discrepancy,MMD)度量鸟声样本特征分布差异,将不同分布的单物种鸟声和多物种鸟声的音频特征映射为同分布的潜在音频特征,再基于同分布的音频特征构造识别模型。使得单物种鸟声样本训练的识别模型也能够适用于多物种鸟声识别。在自然形成的多物种鸟声数据集上,算法在4项多标记评价指标上都取得了较好的识别效果;在人工构造的多物种鸟声数据集上对比试验表明,基于特征迁移的识别算法在单个物种上的正确识别率相较于对比算法最高提升了20%。展开更多
故障诊断对电力系统的稳定运行至关重要。当配电网的拓扑结构发生较大变化时,难以获取大量带有标签的暂态数据,导致传统的故障预测模型精度难以提高。针对此问题,提出一种将特征迁移和深度学习相结合的配电网故障诊断新方法。首先,采集...故障诊断对电力系统的稳定运行至关重要。当配电网的拓扑结构发生较大变化时,难以获取大量带有标签的暂态数据,导致传统的故障预测模型精度难以提高。针对此问题,提出一种将特征迁移和深度学习相结合的配电网故障诊断新方法。首先,采集配电网不同线路的零序电流构造故障特征集;其次,引入加权半监督迁移成分分析(semi-supervised transfer component analysis,SSTCA)方法,利用混合核函数将不同拓扑结构下的特征样本映射到同一特征空间中,缩小数据间的分布差异性;最后,将映射后的源域样本输入卷积神经网络中进行分类训练,并测试映射后的目标域样本。通过Simulink仿真表明,在改变配电网拓扑结构的新场景下,所提的特征迁移方法与其他方法相比,对目标域故障定位精度最高,达到98%以上。展开更多
为了解决语音情感识别系统中训练数据和测试数据来自不同数据库所引起的识别率降低的问题,提出了一种基于稀疏特征迁移的语音情感识别方法。通过引入稀疏编码获取情感特征在不同数据库条件下的共同稀疏表示;同时引入最大区分差异(Maximu...为了解决语音情感识别系统中训练数据和测试数据来自不同数据库所引起的识别率降低的问题,提出了一种基于稀疏特征迁移的语音情感识别方法。通过引入稀疏编码获取情感特征在不同数据库条件下的共同稀疏表示;同时引入最大区分差异(Maximum mean discrepancy,MMD)来衡量不同数据库条件下稀疏表示分布之间的距离,并将其作为稀疏编码目标函数的约束条件,从而获得较为鲁棒的稀疏特征。实验结果表明,相比传统语音情感识别方法,基于稀疏特征迁移的语音情感识别方法显著提高了跨库条件下的情感识别率。展开更多
文摘针对多物种鸟声识别中多物种鸟声样本不足的问题,尝试采用单物种鸟声样本训练多物种鸟声识别模型,并提出一种基于特征迁移的多物种鸟声识别方法。该方法引入特征迁移学习算法,利用最大均值差异(Maximum mean discrepancy,MMD)度量鸟声样本特征分布差异,将不同分布的单物种鸟声和多物种鸟声的音频特征映射为同分布的潜在音频特征,再基于同分布的音频特征构造识别模型。使得单物种鸟声样本训练的识别模型也能够适用于多物种鸟声识别。在自然形成的多物种鸟声数据集上,算法在4项多标记评价指标上都取得了较好的识别效果;在人工构造的多物种鸟声数据集上对比试验表明,基于特征迁移的识别算法在单个物种上的正确识别率相较于对比算法最高提升了20%。
文摘故障诊断对电力系统的稳定运行至关重要。当配电网的拓扑结构发生较大变化时,难以获取大量带有标签的暂态数据,导致传统的故障预测模型精度难以提高。针对此问题,提出一种将特征迁移和深度学习相结合的配电网故障诊断新方法。首先,采集配电网不同线路的零序电流构造故障特征集;其次,引入加权半监督迁移成分分析(semi-supervised transfer component analysis,SSTCA)方法,利用混合核函数将不同拓扑结构下的特征样本映射到同一特征空间中,缩小数据间的分布差异性;最后,将映射后的源域样本输入卷积神经网络中进行分类训练,并测试映射后的目标域样本。通过Simulink仿真表明,在改变配电网拓扑结构的新场景下,所提的特征迁移方法与其他方法相比,对目标域故障定位精度最高,达到98%以上。
文摘目的针对联邦学习中多中心医学数据的异质性特征导致全局模型性能不佳的问题,提出一种基于特征迁移的自适应个性化联邦学习算法(adaptive personalized federated learning via feature transfer,APFFT)。方法首先,为降低全局模型中异质性特征信息影响,提出鲁棒特征选择网络(robust feature selection network,RFS-Net)构建个性化本地模型。RFS-Net通过学习两个迁移权重分别确定全局模型向本地模型迁移时的有效特征以及特征迁移的目的地,并构建基于迁移权重的迁移损失函数以加强本地模型对全局模型中有效特征的注意力,从而构建个性化本地模型。然后,为过滤各本地模型中异质性特征信息,利用自适应聚合网络(adaptive aggregation network,AANet)聚合全局模型。AA-Net基于全局模型交叉熵变化更新迁移权重并构建聚合损失,使各本地模型向全局模型迁移鲁棒特征,提高全局模型的特征表达能力。结果在3种医学图像分类任务上与4种现有方法进行比较实验,在肺结核肺腺癌分类任务中,各中心曲线下面积(area under the curve,AUC)分别为0.7915,0.7981,0.7600,0.7057和0.8069;在乳腺癌组织学图像分类任务中,各中心准确率分别为0.9849、0.9808、0.9835、0.9826和0.9834;在肺结节良恶性分类任务中,各中心AUC分别为0.8097,0.8498,0.7848和0.7923。结论所提出的联邦学习方法,降低了多中心的异质性特征影响,实现基于鲁棒特征的个性化本地模型自适应构建和全局模型自适应聚合,模型性能有较大提升。
文摘为了解决语音情感识别系统中训练数据和测试数据来自不同数据库所引起的识别率降低的问题,提出了一种基于稀疏特征迁移的语音情感识别方法。通过引入稀疏编码获取情感特征在不同数据库条件下的共同稀疏表示;同时引入最大区分差异(Maximum mean discrepancy,MMD)来衡量不同数据库条件下稀疏表示分布之间的距离,并将其作为稀疏编码目标函数的约束条件,从而获得较为鲁棒的稀疏特征。实验结果表明,相比传统语音情感识别方法,基于稀疏特征迁移的语音情感识别方法显著提高了跨库条件下的情感识别率。