This study presents a structural analysis algorithm called the finite particle method (FPM) for kinematically indeterminate bar assemblies. Different from the traditional analysis method, FPM is based on the combina...This study presents a structural analysis algorithm called the finite particle method (FPM) for kinematically indeterminate bar assemblies. Different from the traditional analysis method, FPM is based on the combination of the vector mechanics and numerical calculations. It models the analyzed domain composed of finite particles. Newton's second law is adopted to describe the motions of all particles. A convected material flame and explicit time integration for the solution procedure is also adopted in this method. By using the FPM, there is no need to solve any nonlinear equations, to calculate the stiffness matrix or equilibrium matrix, which is very helpful in the analysis of kinematically indeterminate structures. The basic formulations for the space bar are derived, following its solution procedures for bar assemblies. Three numerical examples are analyzed using the FPM. Results obtained from both the straight pretension cable and the suspension cable assembly show that the FPM can produce a more accurate analysis result. The motion simulation of the four-bar space assembly demonstrates the capability of this method in the analysis ofkinematically indeterminate structures.展开更多
The determination of initial equilibrium shapes is a common problem in research work and engineering applications related to membrane structures. Using a general structural analysis framework of the finite particle me...The determination of initial equilibrium shapes is a common problem in research work and engineering applications related to membrane structures. Using a general structural analysis framework of the finite particle method (FPM), this paper presents the first application of the FPM and a recently-developed membrane model to the shape analysis of light weight mem- branes. The FPM is rooted in vector mechanics and physical viewpoints. It discretizes the analyzed domain into a group of parti- cles linked by elements, and the motion of the free particles is directly described by Newton's second law while the constrained ones follow the prescribed paths. An efficient physical modeling procedure of handling geometric nonlinearity has been developed to evaluate the particle interaction forces. To achieve the equilibrium shape as fast as possible, an integral-form, explicit time integration scheme has been proposed for solving the equation of motion. The equilibrium shape can be obtained naturally without nonlinear iterative correction and global stiffness matrix integration. Two classical curved surfaces of tension membranes pro- duced under the uniform-stress condition are presented to verify the accuracy and efficiency of the proposed method.展开更多
基金supported by the National Natural Science Foundation of China (No. 50638050)the National High-Tech R&D (863) Program (No. 2007AA04Z441), China
文摘This study presents a structural analysis algorithm called the finite particle method (FPM) for kinematically indeterminate bar assemblies. Different from the traditional analysis method, FPM is based on the combination of the vector mechanics and numerical calculations. It models the analyzed domain composed of finite particles. Newton's second law is adopted to describe the motions of all particles. A convected material flame and explicit time integration for the solution procedure is also adopted in this method. By using the FPM, there is no need to solve any nonlinear equations, to calculate the stiffness matrix or equilibrium matrix, which is very helpful in the analysis of kinematically indeterminate structures. The basic formulations for the space bar are derived, following its solution procedures for bar assemblies. Three numerical examples are analyzed using the FPM. Results obtained from both the straight pretension cable and the suspension cable assembly show that the FPM can produce a more accurate analysis result. The motion simulation of the four-bar space assembly demonstrates the capability of this method in the analysis ofkinematically indeterminate structures.
基金Project supported by the National Natural Science Foundation of China (Nos. 51025858 and 51178415)
文摘The determination of initial equilibrium shapes is a common problem in research work and engineering applications related to membrane structures. Using a general structural analysis framework of the finite particle method (FPM), this paper presents the first application of the FPM and a recently-developed membrane model to the shape analysis of light weight mem- branes. The FPM is rooted in vector mechanics and physical viewpoints. It discretizes the analyzed domain into a group of parti- cles linked by elements, and the motion of the free particles is directly described by Newton's second law while the constrained ones follow the prescribed paths. An efficient physical modeling procedure of handling geometric nonlinearity has been developed to evaluate the particle interaction forces. To achieve the equilibrium shape as fast as possible, an integral-form, explicit time integration scheme has been proposed for solving the equation of motion. The equilibrium shape can be obtained naturally without nonlinear iterative correction and global stiffness matrix integration. Two classical curved surfaces of tension membranes pro- duced under the uniform-stress condition are presented to verify the accuracy and efficiency of the proposed method.