In this paper, it is shown that: if λ1 ,……λs axe nonzero real numbers, not all of the same sign, such that A1/A2 is irrational, then for any real number η and ε 〉 0 the inequality |λ1x1^2 + λ2x2^2+ λ3x3^...In this paper, it is shown that: if λ1 ,……λs axe nonzero real numbers, not all of the same sign, such that A1/A2 is irrational, then for any real number η and ε 〉 0 the inequality |λ1x1^2 + λ2x2^2+ λ3x3^4+ λsx3^4+……λsx8^4 +η〈 ε has infinitely many solutions in positive integers x1,... ,xs.展开更多
本文证明了如果λ_1,λ_2,…,λ_8为不全同号的非零实数,其中λ_1/λ_2为无理数,则对任意实数κ及0<σ<1/8,不等式|λ_1x_1~2+λ_2x_2~2+sum ( λ_ix_i^4+κ) from i=3 to 8|<(max 1≤i≤8 xi)^(-σ)有无穷多组整数解(x_1,x_2,...本文证明了如果λ_1,λ_2,…,λ_8为不全同号的非零实数,其中λ_1/λ_2为无理数,则对任意实数κ及0<σ<1/8,不等式|λ_1x_1~2+λ_2x_2~2+sum ( λ_ix_i^4+κ) from i=3 to 8|<(max 1≤i≤8 xi)^(-σ)有无穷多组整数解(x_1,x_2,…,x_8).展开更多
Let R b,c (n) denote the number of representations of n as the sum of one square, four cubes, one b-th power and one c-th power of natural numbers. It is shown that if b=4, 4 c 35, or b=5, 5 c 13, or b=6, 6 c 9,...Let R b,c (n) denote the number of representations of n as the sum of one square, four cubes, one b-th power and one c-th power of natural numbers. It is shown that if b=4, 4 c 35, or b=5, 5 c 13, or b=6, 6 c 9, or b=c=7, then R b,c (n)》n 5/6+1/b+1/c for all sufficiently large n.展开更多
基金the National Natural Science Foundation of China(10671056)
文摘In this paper, it is shown that: if λ1 ,……λs axe nonzero real numbers, not all of the same sign, such that A1/A2 is irrational, then for any real number η and ε 〉 0 the inequality |λ1x1^2 + λ2x2^2+ λ3x3^4+ λsx3^4+……λsx8^4 +η〈 ε has infinitely many solutions in positive integers x1,... ,xs.
基金Project supported in part by the Fundamental Research Funds for the Central Universities(No. 2010HGBZ0603)by NSFC(No.11071186 and No.11201107)
文摘本文证明了如果λ_1,λ_2,…,λ_8为不全同号的非零实数,其中λ_1/λ_2为无理数,则对任意实数κ及0<σ<1/8,不等式|λ_1x_1~2+λ_2x_2~2+sum ( λ_ix_i^4+κ) from i=3 to 8|<(max 1≤i≤8 xi)^(-σ)有无穷多组整数解(x_1,x_2,…,x_8).
文摘Let R b,c (n) denote the number of representations of n as the sum of one square, four cubes, one b-th power and one c-th power of natural numbers. It is shown that if b=4, 4 c 35, or b=5, 5 c 13, or b=6, 6 c 9, or b=c=7, then R b,c (n)》n 5/6+1/b+1/c for all sufficiently large n.