期刊文献+

混合幂的素变数丢番图逼近 被引量:2

Diophantine Approximation with Prime Variables and Mixed Powers
下载PDF
导出
摘要 证明了:如果λ_1,λ_2,λ_3,λ_4是正实数,λ_1/λ_2是无理数和代数数,V是well-spaced序列,δ>0,那么对于v∈V,v≤X,ε>0,使得|λ_(1p_1~2)+λ_(2p_2~2)+λ_(3p_3~3)+λ_(4p_4~3)-v|<v^(-δ)没有素数解p1,p2,p3,p4的v的个数不超过O(X^(20/21+21δ+ε)). This paper shows that: Let λ1,λ2,λ3,λ4 be positive real numbers and suppose that λ1/λ2 is irrational and algebraic. Let V be a well-spaced sequence, δ 〉 0. Then, for any given ε 〉 0, the number of v ∈ V with v ∈ X for which |λ1p1^2+λ2p2^2+λ4p4^3-v|〈v-δ has no solution in primes Pl, P2, P3, P4 does not exceed O(x^20/21+2δ+ε)
出处 《数学年刊(A辑)》 CSCD 北大核心 2010年第2期247-256,共10页 Chinese Annals of Mathematics
基金 国家自然科学基金(No.10671056)资助的项目
关键词 丢番图逼近 素变数 混合幂 Davenport—Heilbronn方法 Diophantine approximation, Prime variables, Mixed powers,Davenport-Heilbronn method
  • 相关文献

参考文献6

  • 1Brudern J,Cook R J,Perelli A.The values of binary linear forms at prime arguments[M] //London Math Soc Lecture Note Ser 237,Cambridge:Cambridge University Press,1997. 被引量:1
  • 2Cook R J,Fox A.The values of ternary quadratic forms at prime arguments[J].Mathematika,2001,48:137-149. 被引量:1
  • 3Cook R J.The value of additive forms at prime arguments[J].Journal de Theorie des Nombres de Bordeaux,2001,13:77-91. 被引量:1
  • 4Davenport H,Heilbronn H.On indefinite quadratic forms in five variables[J].Journal of London Math Boc,1946,21:185-193. 被引量:1
  • 5Davenport H.Multiplicative number theory[M].Chicago:Markham,1967. 被引量:1
  • 6Ghosh A.The distribution of αp2 modulo one[J].Proc London Math Soc,1981,42(3):252-269. 被引量:1

同被引文献13

  • 1Danicic I. On the integral part of a linear form with prime variables [J]. Canadian J Math, 1966, 18:621-628. 被引量:1
  • 2Davenport H, Heilbronn H. On indefinite quadratic forms in five variables [J]. Journal of London Math Soc, 1946, 21:185-193. 被引量:1
  • 3Vaughan R C. Diophantine approximation by prime numbers I [J]. Proc London Math Soc, 1974, 28:373-384. 被引量:1
  • 4Wang T Z, Chen J R. On estimation of linear trigonometrical sums with primes [J]. Acta Math Sinica, 1994, 37:25-31. 被引量:1
  • 5Ghosh A. The distribution αp2 modulo one [J]. Proc London Math Soc, 1981, 42:252 269. 被引量:1
  • 6Briidern J, Cook R J, Perelli A. The values [C]//Greaves G R H, Harman G, Huxley M of binary linear forms at prime arguments N (eds), Sieve methods, exponential sumsand their applications in number theory, Cambridge: Cambridge University Press, 1997, 87-100. 被引量:1
  • 7Cai Y C. A remark on the values of binary linear forms at prime arguments [J]. Arch Math, 2011, 97:431-441. 被引量:1
  • 8Cook R J, Fox A. The values of ternary quadratic forms at prime arguments [J]. Math- ematika, 2001, 48:137-149. 被引量:1
  • 9Harman G. The values of ternary quadratic forms at prime arguments [J]. Mathematika, 2004, 51:83-96. 被引量:1
  • 10Cook R J. The value of additive forms at prime arguments [J]. Journal de Thorie des Nombres de Bordeaux, 2001, 13:77-91. 被引量:1

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部