采用流体体积(volume of fluid,VOF)模型,对0.1、2.03、5.07、10.13 MPa环境压力下垂直管内水蒸汽–水逆向流动过程进行数值模拟。研究垂直管内汽液两相逆流流动过程中,环境压力对淹没开始点、全部携带点、流向反转点及淹没消失点的影...采用流体体积(volume of fluid,VOF)模型,对0.1、2.03、5.07、10.13 MPa环境压力下垂直管内水蒸汽–水逆向流动过程进行数值模拟。研究垂直管内汽液两相逆流流动过程中,环境压力对淹没开始点、全部携带点、流向反转点及淹没消失点的影响。提出了淹没开始点与淹没消失点对应的无量纲汽速、液速间的经验关系式。常压环境下淹没开始点对应的无量纲汽速、液速呈线性分布,但在高压环境下呈二次函数分布,且分布方式与环境压力无关。与常压环境相同,高压环境下的淹没消失也存在滞后现象,且滞后现象的发生范围随环境压力的增大而扩大。有滞后现象的淹没消失点对应的无量纲汽速、液速呈线性关系,直线斜率随压力的升高而增大。高压环境下全部携带点和流向反转点对应的无量纲汽速,均随环境压力的增大而降低,两者均不受液速变化的影响,流向反转点受环境压力的影响相对较小。相同压力条件下,流向反转点所需的汽速低于全部携带点。根据汽液两相流动特性,分析了发生以上现象的原因。展开更多
文摘采用流体体积(volume of fluid,VOF)模型,对0.1、2.03、5.07、10.13 MPa环境压力下垂直管内水蒸汽–水逆向流动过程进行数值模拟。研究垂直管内汽液两相逆流流动过程中,环境压力对淹没开始点、全部携带点、流向反转点及淹没消失点的影响。提出了淹没开始点与淹没消失点对应的无量纲汽速、液速间的经验关系式。常压环境下淹没开始点对应的无量纲汽速、液速呈线性分布,但在高压环境下呈二次函数分布,且分布方式与环境压力无关。与常压环境相同,高压环境下的淹没消失也存在滞后现象,且滞后现象的发生范围随环境压力的增大而扩大。有滞后现象的淹没消失点对应的无量纲汽速、液速呈线性关系,直线斜率随压力的升高而增大。高压环境下全部携带点和流向反转点对应的无量纲汽速,均随环境压力的增大而降低,两者均不受液速变化的影响,流向反转点受环境压力的影响相对较小。相同压力条件下,流向反转点所需的汽速低于全部携带点。根据汽液两相流动特性,分析了发生以上现象的原因。