期刊文献+

高压环境下垂直管内汽液两相逆流过程数值研究 被引量:3

Numerical Study on Vapor-liquid Countercurrent Process in Vertical Tube Under High Pressure
下载PDF
导出
摘要 采用流体体积(volume of fluid,VOF)模型,对0.1、2.03、5.07、10.13 MPa环境压力下垂直管内水蒸汽–水逆向流动过程进行数值模拟。研究垂直管内汽液两相逆流流动过程中,环境压力对淹没开始点、全部携带点、流向反转点及淹没消失点的影响。提出了淹没开始点与淹没消失点对应的无量纲汽速、液速间的经验关系式。常压环境下淹没开始点对应的无量纲汽速、液速呈线性分布,但在高压环境下呈二次函数分布,且分布方式与环境压力无关。与常压环境相同,高压环境下的淹没消失也存在滞后现象,且滞后现象的发生范围随环境压力的增大而扩大。有滞后现象的淹没消失点对应的无量纲汽速、液速呈线性关系,直线斜率随压力的升高而增大。高压环境下全部携带点和流向反转点对应的无量纲汽速,均随环境压力的增大而降低,两者均不受液速变化的影响,流向反转点受环境压力的影响相对较小。相同压力条件下,流向反转点所需的汽速低于全部携带点。根据汽液两相流动特性,分析了发生以上现象的原因。 The volume of fluid (VOF) method was used to conduct numerical simulation to investigate the flooding process in vertical tube under different pressure of 0.1 MPa, 2.03 MPa, 5.07 MPa and 10.13 MPa. The effects of pressure on flooding, complete carry up, flow reverse and deflooding of vapor-liquid two phase flow in vertical tube were studied. The relationship of flooding and deflooding between dimensionless quantity of vapor velocity and liquid velocity were presented. The pressure has no influence on flooding, and the distribution of flooding is a quadratic function instead of fitting with Wallis's linear relationship. The hysteresis effect of deflooding under high pressure becomes more apparent with the increase of pressure. The distribution of deflooding is linear in the dimensionless quantity of vapor velocity and liquid velocity coordinate system. Its slope decreases with the increase of pressure. The complete carry up and flow reverse are not affected by liquid velocity but decrease with the increase of pressure, while the influence of pressure on flow reverse is small. The dimensionless quantity of vapor velocity of flow reverse is smaller than complete carry up in the same case. Basing on the characters of vapor-liquid two phase flow, reasons of the phenomenon appeared were analyzed.
作者 周云龙 黄娜
出处 《中国电机工程学报》 EI CSCD 北大核心 2013年第29期69-74,10,共6页 Proceedings of the CSEE
关键词 两相流 淹没 流向反转 流体体积 数值分析 two-phase flow flooding counter flow volume of fluid (VOF) numerical simulation
  • 相关文献

参考文献5

二级参考文献22

  • 1颜晓虹,赵耀华.微管内流动沸腾流型的可视化研究[J].工程热物理学报,2005,26(z1):183-186. 被引量:2
  • 2彭云康.回流流动极限实验研究综述[J].核动力工程,1993,14(6):556-560. 被引量:10
  • 3宋静.微通道内气-液两相流动特性研究[J].青岛科技大学学报(自然科学版),2006,27(4):299-303. 被引量:9
  • 4齐守良,张鹏,王如竹,徐学敏.微通道中液氮的流动沸腾——两相流动压降分析[J].机械工程学报,2007,43(5):36-43. 被引量:10
  • 5Fukano T, Kariyasaki A, Kagawa M. Flow patterns and pressure drop in isothermal gas-liquid flow in a horizontal capillary tube[J]. Transactions of Japan Society of Mechanical Engineers, 1990, Part B, 56(528): 2318-2325. 被引量:1
  • 6Kew A P, Comwell K. Correlations for the prediction of boiling heat transfer in small-diameter channels[J]. Applied Thermal Engineering, 1997, 17(8): 705-715. 被引量:1
  • 7Kasza K A , Didasealon T , Wambsganss M W. Microscale flow visualization of nucleate boiling in small channels: mechanisms influencing heat transfer [C]//Proceedings of International Conference on Compact Heat Exchangers for the Process Industries, New York, BegellHouse, 1997: 343-352. 被引量:1
  • 8Wu H Y, Cheng P. Liquid/two-phase/vapor alternating flow during boiling in microchannels at high heat flux [J]. International Communications in Heat and Mass Transfer, 2003, 30(3): 295-302. 被引量:1
  • 9Wu H Y, Cheng P. Visualization and measurements of periodic boiling in silicon microchannels[J]. International Journal of Heat and Mass Transfer, 2003, 46(14): 2603-2614. 被引量:1
  • 10Celata P C, Suha S K, Zummeo G, et al. Heat transfer characteristics of flow boiling in a single horizontal microchannel[J] . International Journal of Thermal Science, 2010, 49(7): 1086-1094. 被引量:1

共引文献26

同被引文献42

  • 1LIU Xiaomin,LU Jun,GAO Renheng,XI Guang.Numerical Investigation of the Aerodynamic Performance Affected by Spiral Inlet and Outlet in a Positive Displacement Blower[J].Chinese Journal of Mechanical Engineering,2013,26(5):957-966. 被引量:4
  • 2LIN Zong-hu(林宗虎),GUO Lie-jin(郭烈锦),CHEN Ting-kuan(陈听宽),et al.Theory and technology research on multiphase thermal physics in energy and power field(能源动力中多相流热物理基础理论与技术研究)[M].Beijing(北京):China Power Press(中国电力出版社),2010:52-60. 被引量:1
  • 3Gad Hetsroni.Handbook of multiphase systems(多相流动和传热手册)[M].LU Zhong-qi(鲁钟琪),trans.Beijing(北京):China Machine Press(机械工业出版社),1993:157-200. 被引量:1
  • 4Hewitt G F,Hall-Taylor N S.Annular two-phase flow[M].Oxford:Pergamon Press,1970:147-151. 被引量:1
  • 5ZHOU Yun-long(周云龙),HONG Wen-peng(洪文鹏),SUN Bin(孙斌).Theory and method on gas-liquid two-phase flow intelligent identification(气液两相流型智能识别理论及方法)[M].Beijing(北京):Science Press(科学出版社),2008:85-89. 被引量:1
  • 6Legius H J W M,Van den Akker H E A,Narumo T.Measurements on wave propagation and bubble and slug velocities in concurrent upward two-phase flow[J].Experimental Thermal and Fluid Science,1997,15(2):267-278. 被引量:1
  • 7Zhu W,Ching C,Shoukri M.Phase distribution and flow regime transition of two-phase flow in large diameter pipes[C].5th International Conference of Multiphase Flow,Yokohama:Japan,2004. 被引量:1
  • 8Cheng H,Hills J H,Azzopardi B J.A study of the bubble to slug transition in vertical gas-liquid flow in columns of different diameter[J].International Journal of Multiphase Flow.1998,24(3):431-452. 被引量:1
  • 9Ohnuki A,Akimoto H.Experimental study on transition of flow pattern and phase distribution in upward air-water flow along a large vertical pipe[J].International Journal of Multiphase Flow.2000,26(3):267-286. 被引量:1
  • 10Omebere-Iyari N K,Azzopardi B J,Ladam Y.Two-phase flow patterns in large diameter vertical pipes at high pressures[J].AICh E Journal.2007,53(10):2493-2504. 被引量:1

引证文献3

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部