设{X,X_n;n≥1}是一独立同分布的随机变量序列.如果|X_m|是新序列{|X_k|;k≤n}中的第r大元素,则令X_n^((r)=X_m.同时记部分和与修整和分别为S_n=sum from k=1 to n X_k和^((r))S_n=S_n-(X_n^((1))+…+X_n^((r))).该文在EX^2可能是无穷...设{X,X_n;n≥1}是一独立同分布的随机变量序列.如果|X_m|是新序列{|X_k|;k≤n}中的第r大元素,则令X_n^((r)=X_m.同时记部分和与修整和分别为S_n=sum from k=1 to n X_k和^((r))S_n=S_n-(X_n^((1))+…+X_n^((r))).该文在EX^2可能是无穷的条件下,得到了修整和^((r))S_n的广义强逼近定理.作为应用,建立了关于修整和以及修整和乘积的广义泛函重对数律.展开更多
文摘设{X,X_n;n≥1}是一独立同分布的随机变量序列.如果|X_m|是新序列{|X_k|;k≤n}中的第r大元素,则令X_n^((r)=X_m.同时记部分和与修整和分别为S_n=sum from k=1 to n X_k和^((r))S_n=S_n-(X_n^((1))+…+X_n^((r))).该文在EX^2可能是无穷的条件下,得到了修整和^((r))S_n的广义强逼近定理.作为应用,建立了关于修整和以及修整和乘积的广义泛函重对数律.
基金The work is supported by NSFC(No.11661025)Science Research Foundation of Guangxi Education department(No.YB2014117)+1 种基金Guangxi Programme for Promoting Young Teachers's Ability(No.2017KY0191)Innovative Programme for University(No.201510595198)