期刊文献+

线性过程的强逼近和重对数律 被引量:2

Strong Approximation and the Law of the Iterated Logarithm for Linear Processes
下载PDF
导出
摘要 本文讨论由独立同分布随机变量列产生的线性过程的泛函型重对数律和强逼近,同时又给出由NA随机变量列产生的线性过程的重对数律. In this paper, we prove strong approximations and the functional law of the iterated logarithm for linear processes generated by i.i.d, random variables, and give the law of the iterated logarithm for linear processes generated by NA random variables.
出处 《应用概率统计》 CSCD 北大核心 2008年第3期225-239,共15页 Chinese Journal of Applied Probability and Statistics
基金 国家自然科学基金(批准号:10571073)
关键词 线性过程 泛函型重对数律 强逼近 重对数律 Linear processes, functional law of the iterated logarithm, strong approximations, law of the iterated logarithm
  • 相关文献

参考文献11

  • 1Phillips, P.C.B., Solo, V., Asymptotic for linear processes, Ann. Statist., 20(1992), 971-1001. 被引量:1
  • 2Qiu, J., Lin, Z.Y., The functional central limit theorem for linear process with strong near-epoch dependent innovations, 已投稿 J. Econome., (邱瑾博士论文), (2004). 被引量:1
  • 3Wang, Q.Y., Lin, Y.X., Gulati, C.M., Strong approximation for long memory processes with application, J. Theor. Probab., 16(2003), 377-389. 被引量:1
  • 4Lu, C.R., Qiu,J., Strong approximation for linear process by Wiener processes, 已投稿 Statist. Probab. Letters, (邱瑾博士论文), (2004). 被引量:1
  • 5Shao, Q.M., Su, C., The Law of the iterated Logarithm for negatively associated random variables, Stochastic Process. Appl., 83(1999), 139-148. 被引量:1
  • 6吴智泉,王向忱编..巴氏空间上的概率论[M].长春:吉林大学出版社,1990:498.
  • 7Ledoux, M., Talagrand, M., Probability in Banach Spaces - Isoperimetry and processes, Springer- Verlag, Berlin, 1991. 被引量:1
  • 8de Acosta, A., A new proof of the Hartman-Wintner law of the iterated logarithm, Ann. Probab., 11(1983), 270-276. 被引量:1
  • 9林正炎等编著..概率极限理论基础[M].北京:高等教育出版社,1999:244.
  • 10Komlos, J., Major, P., Tusnady, G., An approximation of partial sums of independent R.V.'s and the sample DF, I, Z. Wahrsch. verw. Gebiete, 32(1975), 111-131. 被引量:1

同被引文献17

  • 1陆传荣,邱瑾.线性过程的强逼近[J].数学物理学报(A辑),2007,27(2):309-313. 被引量:2
  • 2Phillips P C B, Solo V. Asymptotics for Linear Processes [J]. Ann Statist, 1992, 20(2) : 971-1001. 被引量:1
  • 3Peligrad M, Utev S. Central Limit Theorem for Linear Process [ J]. Ann Probab, 1997, 25 (1) : 443-456. 被引量:1
  • 4Ho H C, Hsing T. Limit Theorems for Functionals of Moving Averages [J]. Ann Probab, 1997, 25(4) : 1636-1669. 被引量:1
  • 5Kim T, Back J. A Central Limit Theorem for Stationary Linear Processes under Linear Positive Quadrant Dependent Process [J]. Statist Probab Lett, 2001, 51(3):299-305. 被引量:1
  • 6Wang Q Y, Lin Y X, Gulati C M. The Invariance Principle for Linear Processes with Applications [ J ]. Econometric Theory, 2002, 18(1): 119-139. 被引量:1
  • 7Salvadori G. Linear Combinations of Order Statistics to Estimate the Quantiles of Generalized Pareto and Extreme Values Distributions [ J]. Stochastic Environmental Research and Risk Assessment, 2003, 17 (1/2) : 116-140. 被引量:1
  • 8Kim T, Ko M, Park D. Almost Sure Convergence for Linear Processes Generated by Positively Dependent Processes [J]. Stoch Anal Appl, 2004, 22(1): 143-153. 被引量:1
  • 9CAI Guang-hui. Almost Sure Convergence for Linear Process Generated by Asymptotically Linear Negative Quadrant Dependence Processes [J]. Commun Korean Math Soc, 2005, 20(1): 161-168. 被引量:1
  • 10Dedecker J, MerlevSde F, Peligrad M. Invariance Principles for Linear Processes with Application to Isotonic Regression [J]. Bernoulli, 2011, 17(1): 88-113. 被引量:1

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部