Samples of five types of coal and oil shale from the Daqing region have been subjected to co-pyrolysis in different blending ratios with thermo-gravimetry (TG), given a heating rate of 30 ℃/min to a final tem- pera...Samples of five types of coal and oil shale from the Daqing region have been subjected to co-pyrolysis in different blending ratios with thermo-gravimetry (TG), given a heating rate of 30 ℃/min to a final tem- perature of 900 ℃. Investigations on pyrolysis of mixing coal and oil shale in different proportions were carried out, indicating that the main scope of weight loss corresponding to hydrocarbon oil and gas release was between 350 and 550 ℃. At higher temperatures, significant weight loss was attributed to coke decomposition. Characteristic pyrolysis parameters of blends from oil shale and the high ranked XZ coal varied with the blending ratio, but oil shale dominated the process. At the same blending propor- tions, highly volatile medium and low ranked coal of low moisture and ash content reacted well during pyrolysis and could easily create synergies with oil shale. Medium and high ranked coal with high mois- ture content played a negative role in co-pyrolysis.展开更多
从无锡市滨湖区蠡河底泥中富集培养反硝化复合菌群,研究其在不同富集培养阶段TN、NO-3-N、NO-2-N、NH+4-N和COD动态变化,分析反硝化过程中气体释放总量、释放速率和成分,通过构建全长16S r DNA克隆文库研究其菌落结构.结果表明,反硝化...从无锡市滨湖区蠡河底泥中富集培养反硝化复合菌群,研究其在不同富集培养阶段TN、NO-3-N、NO-2-N、NH+4-N和COD动态变化,分析反硝化过程中气体释放总量、释放速率和成分,通过构建全长16S r DNA克隆文库研究其菌落结构.结果表明,反硝化复合菌群富集在阶段4时脱氮效果最佳,仅在9 h内,330 mg·L-1的TN负荷下,TN去除率达90.9%,NO-3-N去除率达100%,中间产物NO-2-N和NH+4-N积累量最少,分别为3.39 mg·L-1和16.64 mg·L-1,COD去除率达85%;释放气体260m L,气体主要成分为N2,同时还有少量的CH4和CO2等.富集培养反硝化复合菌群细菌属于Pseudomonadaceae科和Rhodocyclaceae科,为Proteobacteria门,OUT丰度分别为57.8%和31.6%,Pseudomonadaceae科是优势类群.展开更多
The square root relationship of gas release in the early stage of desorption is widely used to provide a simple and fast estimation of the lost gas in coal mines. However, questions arise as to how the relationship wa...The square root relationship of gas release in the early stage of desorption is widely used to provide a simple and fast estimation of the lost gas in coal mines. However, questions arise as to how the relationship was theoretically derived, what are the assumptions and applicable conditions and how large the error will be. In this paper, the analytical solutions of gas concentration and fractional gas loss for the diffusion of gas in a spherical coal sample were given with detailed mathematical derivations based on the diffusion equation. The analytical solutions were approximated in case of small values of time and the error analyses associated with the approximation were also undertaken. The results indicate that the square root relationship of gas release is the first term of the approximation, and care must be taken in using the square root relationship as a significant error might be introduced with increase in the lost time and decrease in effective diameter of a spherical coal sample.展开更多
The Shenhu area on the northern continental slope of the South China Sea (SCS) is one of the promising fields for gas hydrate exploitation. The hydrate-bearing layer at drilling site SH2 is overlain and underlain by...The Shenhu area on the northern continental slope of the South China Sea (SCS) is one of the promising fields for gas hydrate exploitation. The hydrate-bearing layer at drilling site SH2 is overlain and underlain by permeable zones of mobile water. In this study a vertical well was configured with a perforated Interval I for producing gas and a coiled Interval II for heating sed- iment, The hydrate is dissociated by a small depressurization at Interval Ⅰ and a thermal stimulation at Interval Ⅱ. The numeri- cal simulations indicate that the thermal stimulation has a significant effect on gas release from the hydrates in the production duration and improves the gas production in the late period. The gas released by thermal stimulation cannot be produced as quickly as the production gets operated because of the hard pathway for fluids to flow in the sediments. The gas production is enhanced due to the heating for 7242 m3 in the whole production. Increasing heating temperature at Interval Ⅱcan improve gas production and restrain water output, and advance the arrival time of the gas flow from the zone at Interval Ⅱ. The absolute criterion and relative criterion suggest that the thermal stimulation in the production schemes is pronounced for releasing gas from the hydrate deposit, but the production efficiency of gas is limited by the sediment of low permeability. The study pro- vides an insight into the production potential of the hydrate accumulations by thermal stimulation with depressurization in two wells, and a basis for analyzing economic feasibility of gas production from the area.展开更多
基金the financial support from the National Natural Science Foundation of China (No. 51104159)the Special Found of Central Universities for Basic Scientific Research Projects (No. 2011QNB06)
文摘Samples of five types of coal and oil shale from the Daqing region have been subjected to co-pyrolysis in different blending ratios with thermo-gravimetry (TG), given a heating rate of 30 ℃/min to a final tem- perature of 900 ℃. Investigations on pyrolysis of mixing coal and oil shale in different proportions were carried out, indicating that the main scope of weight loss corresponding to hydrocarbon oil and gas release was between 350 and 550 ℃. At higher temperatures, significant weight loss was attributed to coke decomposition. Characteristic pyrolysis parameters of blends from oil shale and the high ranked XZ coal varied with the blending ratio, but oil shale dominated the process. At the same blending propor- tions, highly volatile medium and low ranked coal of low moisture and ash content reacted well during pyrolysis and could easily create synergies with oil shale. Medium and high ranked coal with high mois- ture content played a negative role in co-pyrolysis.
文摘The square root relationship of gas release in the early stage of desorption is widely used to provide a simple and fast estimation of the lost gas in coal mines. However, questions arise as to how the relationship was theoretically derived, what are the assumptions and applicable conditions and how large the error will be. In this paper, the analytical solutions of gas concentration and fractional gas loss for the diffusion of gas in a spherical coal sample were given with detailed mathematical derivations based on the diffusion equation. The analytical solutions were approximated in case of small values of time and the error analyses associated with the approximation were also undertaken. The results indicate that the square root relationship of gas release is the first term of the approximation, and care must be taken in using the square root relationship as a significant error might be introduced with increase in the lost time and decrease in effective diameter of a spherical coal sample.
基金supported by the China Geological Survey and Lawrence Berkeley National Laboratory, the National Natural Science Foundation of China (Grant No. 41076037)China Geological Survey (Grant No.GZH2012006003)National Basic Research Program of China (Grant No. 2009CB219508)
文摘The Shenhu area on the northern continental slope of the South China Sea (SCS) is one of the promising fields for gas hydrate exploitation. The hydrate-bearing layer at drilling site SH2 is overlain and underlain by permeable zones of mobile water. In this study a vertical well was configured with a perforated Interval I for producing gas and a coiled Interval II for heating sed- iment, The hydrate is dissociated by a small depressurization at Interval Ⅰ and a thermal stimulation at Interval Ⅱ. The numeri- cal simulations indicate that the thermal stimulation has a significant effect on gas release from the hydrates in the production duration and improves the gas production in the late period. The gas released by thermal stimulation cannot be produced as quickly as the production gets operated because of the hard pathway for fluids to flow in the sediments. The gas production is enhanced due to the heating for 7242 m3 in the whole production. Increasing heating temperature at Interval Ⅱcan improve gas production and restrain water output, and advance the arrival time of the gas flow from the zone at Interval Ⅱ. The absolute criterion and relative criterion suggest that the thermal stimulation in the production schemes is pronounced for releasing gas from the hydrate deposit, but the production efficiency of gas is limited by the sediment of low permeability. The study pro- vides an insight into the production potential of the hydrate accumulations by thermal stimulation with depressurization in two wells, and a basis for analyzing economic feasibility of gas production from the area.