摘要
无需额外的能源消耗,利用永磁体有望克服电解水的瓶颈问题.尽管近年来研究者在该方向付出了很多努力,但磁场效应的潜在机制仍然不明确.本文通过浸涂超亲水性γ-Fe_(2)O_(3)层,使其沉积在不同的电极基底上,并改变它们的表面润湿性和磁性,从而成功地揭示了磁场效应的作用机制.结果表明,在高电流密度下,磁场主要由额外施加在氧气气泡上的洛伦兹力和开尔文力产生,前者决定外加磁场的几何构型,后者则与电极的磁性密切相关.同时,本文还提出了通过优化磁场效应从而提高水电解整体效率的策略.
The challenge of overcoming the bottleneck in water electrolysis can potentially be addressed by utilizing permanent magnets without extra energy consumption,but the underlying mechanism of magnetic field effects is still puzzling despite increasing efforts in last few years.In this work,by dip-coating a superhydrophilicγ-Fe_2O_(3)layer onto different electrode substrates,their surface wettability and magnetism are modified,so the ever-tangled effects of magnetic field are separated and identified.It is determined that the primary contribution of magnetic fields at the high current density was due to additional Lorentz force and Kelvin force exerted on oxygen gas bubble,with the former being dependent on the external magnetic field's geometry and the latter closely tied to the electrodes'magnetism.Strategies to maximize effects of magnetic field as well as the overall efficiency of water electrolysis is proposed.
作者
李晓宁
郝崇琰
杜雨蒙
卢昀
范亚蒙
王明月
王娜娜
孟瑞晋
王晓临
徐梽川
程振翔
Xiaoning Li;Chongyan Hao;Yumeng Du;Yun Lu;Yameng Fan;Mingyue Wang;Nana Wang;Ruijin Meng;Xiaolin Wang;Zhichuan J.Xu;Zhenxiang Cheng(Institute for Superconducting and Electronic Materials(ISEM),Australia Institute for Innovative Materials,Innovation Campus,University of Wollongong,North Wollongong 2500,NSW,Australia;School of Materials Science and Engineering,Nanyang Technological University,50 Nanyang Avenue,Singapore 639798,Singapore;CAS Key Laboratory of Mechanical Behavior and Design of Materials,School of Engineering Science,University of Science and Technology of China,Hefei 230026,Anhui,China)
基金
国家自然科学基金(52102238)
澳大利亚研究委员会(DP190100150).
关键词
水分解
磁场
气体释放
洛伦兹力
开尔文力
Water splitting
Magnetic field
Gas release
Lorentz force
Kelvin force