期刊文献+
共找到382篇文章
< 1 2 20 >
每页显示 20 50 100
基于概率假设密度滤波方法的多目标跟踪技术综述 被引量:50
1
作者 杨峰 王永齐 +1 位作者 梁彦 潘泉 《自动化学报》 EI CSCD 北大核心 2013年第11期1944-1956,共13页
概率假设密度(Probability hypothesis density,PHD)滤波方法在多目标跟踪、交通管制、图像处理以及多传感器管理等领域得到了广泛关注.本文对基于PHD滤波方法的多目标跟踪技术的产生、发展及研究现状进行了综述,主要包括PHD滤波器、PH... 概率假设密度(Probability hypothesis density,PHD)滤波方法在多目标跟踪、交通管制、图像处理以及多传感器管理等领域得到了广泛关注.本文对基于PHD滤波方法的多目标跟踪技术的产生、发展及研究现状进行了综述,主要包括PHD滤波器、PHD执行方法、峰值提取及航迹提取技术、多传感器多目标跟踪及多传感器管理、PHD平滑器以及多目标跟踪性能评价指标等,并对PHD滤波器的相关应用进行介绍.最后,基于现有PHD滤波进展,提出了PHD滤波技术在多目标跟踪领域需要重点关注的若干问题. 展开更多
关键词 概率假设密度 多目标跟踪 贝叶斯滤波 峰值及航迹提取
下载PDF
基于改进K-means++聚类的多扩展目标跟踪算法 被引量:17
2
作者 俞皓芳 孙力帆 付主木 《计算机应用》 CSCD 北大核心 2020年第1期271-277,共7页
针对多扩展目标跟踪过程中量测集划分准确度低和计算量大的问题,提出一种基于改进K-means++聚类划分的高斯混合假设密度强度多扩展目标跟踪算法。首先,根据下一时刻目标可能变化的情况缩小K值的遍历范围;其次,利用目标预测状态选择初始... 针对多扩展目标跟踪过程中量测集划分准确度低和计算量大的问题,提出一种基于改进K-means++聚类划分的高斯混合假设密度强度多扩展目标跟踪算法。首先,根据下一时刻目标可能变化的情况缩小K值的遍历范围;其次,利用目标预测状态选择初始聚类中心点,为正确划分量测集提供依据,从而提高聚类算法的精度;最后,将所提改进K-means++聚类划分方法应用到高斯混合概率假设滤波器中,联合估计多目标的个数和状态。仿真实验结果表明:与基于距离划分和基于K-means++的多扩展目标跟踪算法相比,该算法在平均跟踪时间上分别减小了59.16%和53.25%,同时其最优子模式指派度量(OSPA)远小于以上两种算法。综上,该算法能在大幅度降低计算复杂度的同时取得比现有量测集划分方法更为优异的跟踪性能。 展开更多
关键词 多目标跟踪 扩展目标 概率假设密度 高斯混合 K-means++聚类
下载PDF
基于随机有限集的目标跟踪方法研究及最新进展 被引量:16
3
作者 王晓 韩崇昭 连峰 《工程数学学报》 CSCD 北大核心 2012年第4期567-578,共12页
本文概述了基于随机有限集的目标跟踪方法的产生、发展和研究现状.论文概要总结了基于随机有限集的目标跟踪方法的基础理论,主要包括随机有限集的理论基础,概率假设密度滤波器的理论基础,概率假设密度滤波器的实现方式以及基于随机有限... 本文概述了基于随机有限集的目标跟踪方法的产生、发展和研究现状.论文概要总结了基于随机有限集的目标跟踪方法的基础理论,主要包括随机有限集的理论基础,概率假设密度滤波器的理论基础,概率假设密度滤波器的实现方式以及基于随机有限集的目标跟踪算法的性能评价指标.文中同时简要介绍了概率假设密度滤波器在目标跟踪领域的应用,并对在该领域未来的发展提出了自己的看法. 展开更多
关键词 随机有限集 概率假设密度 目标跟踪
下载PDF
高斯混合粒子PHD滤波被动测角多目标跟踪 被引量:12
4
作者 张俊根 姬红兵 《控制与决策》 EI CSCD 北大核心 2011年第3期413-417,共5页
为解决目标数未知或随时间变化的多目标跟踪问题,通常将多目标状态和观测数据表示成随机集形式,并通过递推计算目标状态联合分布的概率假设密度(PHD)来完成.然而,对于被动测角的非线性跟踪问题,PHD无法获得闭合解,为此提出一种新的高斯... 为解决目标数未知或随时间变化的多目标跟踪问题,通常将多目标状态和观测数据表示成随机集形式,并通过递推计算目标状态联合分布的概率假设密度(PHD)来完成.然而,对于被动测角的非线性跟踪问题,PHD无法获得闭合解,为此提出一种新的高斯混合粒子PHD算法.该算法利用高斯混合近似PHD,以避免用聚类确定目标状态,并采用拟蒙特卡罗(QMC)积分方法计算目标状态的预测和更新分布.仿真结果验证了所提出算法的有效性. 展开更多
关键词 多目标跟踪 随机集 概率假设密度 被动测角 拟蒙特卡罗积分
原文传递
用于机动目标跟踪的多模型概率假设密度滤波器 被引量:12
5
作者 王晓 韩崇昭 《西安交通大学学报》 EI CAS CSCD 北大核心 2011年第12期1-5,共5页
针对概率假设密度(PHD)滤波器在多目标跟踪问题中无法解决目标发生较大机动时的目标丢失问题,提出了一种多模型概率假设密度(MM-PHD)滤波器.这种MM-PHD滤波器在粒子PHD滤波器的基础上,使用多模型方法对滤波器中每个描述目标状态的粒子... 针对概率假设密度(PHD)滤波器在多目标跟踪问题中无法解决目标发生较大机动时的目标丢失问题,提出了一种多模型概率假设密度(MM-PHD)滤波器.这种MM-PHD滤波器在粒子PHD滤波器的基础上,使用多模型方法对滤波器中每个描述目标状态的粒子的状态进行更新,再将更新后的粒子代入传统的PHD滤波器中用于估计目标的PHD的分布.该滤波器结合PHD滤波器和多模型方法的特点,可用于目标数未知的多机动目标跟踪,且对目标的数量和状态的估计更加准确.多机动目标跟踪的仿真实验表明,与已有方法相比,该滤波器对目标数的估计与真实情况基本一致,描述多目标状态估计误差的Wasserstein距离值降低了50%以上. 展开更多
关键词 机动目标跟踪 概率假设密度 多模型 估计
下载PDF
多目标跟踪的概率假设密度粒子滤波 被引量:10
6
作者 田淑荣 王国宏 何友 《海军航空工程学院学报》 2007年第4期417-420,430,共5页
在多目标跟踪中,当目标数很大时,目标状态的联合分布的计算量会非常大.如果目标独立运动,可用各目标分别滤波来代替,但这要求考虑数据互联问题.文章介绍一种可以解决计算量问题的方法,只需计算联合分布的一阶矩--概率假设密度(PHD),PHD... 在多目标跟踪中,当目标数很大时,目标状态的联合分布的计算量会非常大.如果目标独立运动,可用各目标分别滤波来代替,但这要求考虑数据互联问题.文章介绍一种可以解决计算量问题的方法,只需计算联合分布的一阶矩--概率假设密度(PHD),PHD在任意区域S上的积分是S内目标数的期望值.因未记录目标身份,避免了数据互联问题.仿真中,传感器为被动雷达,目标观测值为距离、角度及速度时,对上述的PHD滤波进行了粒子实现,并对观测值是否相关的不同情况进行比较.PHD粒子滤波应用在非线性模型的多目标跟踪,实验结果表明,滤波可以稳健跟踪目标数为变数的情况,得到了接近真实情况的结果. 展开更多
关键词 多目标跟踪 粒子滤波 概率假设密度 随机集 有限集统计
下载PDF
基于箱粒子的多扩展目标PHD滤波 被引量:11
7
作者 宋骊平 严超 +1 位作者 姬红兵 梁萌 《控制与决策》 EI CSCD 北大核心 2015年第10期1759-1765,共7页
在高斯混合多扩展目标PHD滤波的基础上,结合最新兴起的箱粒子滤波,提出一种基于区间分析的多扩展目标PHD滤波算法.采用大小可控的非零矩形区域来代替传统的多个点量测,这样可降低权值计算中对量测分布的要求.仿真对比实验表明,采用区间... 在高斯混合多扩展目标PHD滤波的基础上,结合最新兴起的箱粒子滤波,提出一种基于区间分析的多扩展目标PHD滤波算法.采用大小可控的非零矩形区域来代替传统的多个点量测,这样可降低权值计算中对量测分布的要求.仿真对比实验表明,采用区间分析方法在保证近似于传统滤波精度的同时可降低计算复杂度,在目标数目估计及抗杂波干扰方面也具有较为突出的优势,并且可解决在目标靠近时由于不能正确给出子划分而造成的漏检问题. 展开更多
关键词 箱粒子 区间分析 概率假设密度 多目标跟踪 扩展目标
原文传递
平方根容积卡尔曼滤波概率假设密度算法在移动机器人同时定位与地图构建中的应用 被引量:11
8
作者 闫德立 宋永端 +1 位作者 宋宇 康轶非 《控制理论与应用》 EI CAS CSCD 北大核心 2014年第8期1009-1017,共9页
针对杂波环境或数据关联模糊环境下移动机器人同时定位与地图构建(SLAM)的问题,本文提出平方根容积卡尔曼滤波概率假设密度(SRCKF-PHD)SLAM算法,该算法的主要特点在于:1)采用容积规则方法计算非线性函数高斯权重积分以及机器人位姿粒子... 针对杂波环境或数据关联模糊环境下移动机器人同时定位与地图构建(SLAM)的问题,本文提出平方根容积卡尔曼滤波概率假设密度(SRCKF-PHD)SLAM算法,该算法的主要特点在于:1)采用容积规则方法计算非线性函数高斯权重积分以及机器人位姿粒子权重,达到改善位姿估计性能的目的;2)在高斯混合概率假设密度更新过程中,将平方根容积卡尔曼滤波应用于高斯项权重更新及观测似然计算中,保证了协方差矩阵的对称性和半正定性,提高了地图估计的精度和稳定性.通过仿真实验及CarPark数据集,将提出算法与RB-PHD-SLAM算法进行对比,结果表明该算法对机器人位姿估计精度及地图估计精度的提高是有效的. 展开更多
关键词 移动机器人 同时定位与地图构建 平方根容积卡尔曼滤波 概率假设密度
下载PDF
基于目标出生强度在线估计的多目标跟踪算法 被引量:9
9
作者 闫小喜 韩崇昭 《自动化学报》 EI CSCD 北大核心 2011年第8期963-972,共10页
针对多目标跟踪中未知的目标出生强度,提出了基于Dirichlet分布的目标出生强度在线估计算法,来改进概率假设密度滤波器在多目标跟踪中的性能.算法采用有限混合模型来描述未知目标出生强度,使用仅依赖于混合权重的负指数Dirichlet分布作... 针对多目标跟踪中未知的目标出生强度,提出了基于Dirichlet分布的目标出生强度在线估计算法,来改进概率假设密度滤波器在多目标跟踪中的性能.算法采用有限混合模型来描述未知目标出生强度,使用仅依赖于混合权重的负指数Dirichlet分布作为混合模型参数的先验分布.利用拉格朗日乘子法推导了混合权重在极大后验意义下的在线估计公式;混合权重在线估计过程利用了负指数Dirichlet分布的不稳定性,驱使与目标出生数据不相关分量的消亡.以随机近似过程为分量均值和方差的在线估计策略,推导了基于缺失数据的分量均值与方差的在线估计公式.在无法获得初始步出生目标先验分布的约束下,提出了在混合模型上增加均匀分量的初始化方法.以当前时刻的多目标状态估计值为出发点,提出了利用概率假设密度滤波器消弱杂波影响的出生目标数据获取方法.仿真结果表明,提出的目标出生强度在线估计算法改进了概率假设密度滤波器在多目标跟踪中的性能. 展开更多
关键词 多目标跟踪 概率假设密度 目标出生强度 在线估计 极大后验 Dirichlet分布
下载PDF
组网无源雷达变数目多目标跟踪算法 被引量:9
10
作者 时银水 姬红兵 杨柏胜 《西安电子科技大学学报》 EI CAS CSCD 北大核心 2010年第2期218-223,共6页
针对组网无源雷达多目标跟踪问题,提出一种新的变数目多目标跟踪算法,实时估计目标数目与多目标状态.算法采用多站集中式融合策略解决无源观测的不完全性问题,采用最小二乘算法构造伪位置观测解决无源观测的非线性问题.针对变数目多目... 针对组网无源雷达多目标跟踪问题,提出一种新的变数目多目标跟踪算法,实时估计目标数目与多目标状态.算法采用多站集中式融合策略解决无源观测的不完全性问题,采用最小二乘算法构造伪位置观测解决无源观测的非线性问题.针对变数目多目标跟踪问题,利用随机集理论将多目标状态与观测构成随机有限集,通过高斯混合概率假设密度滤波递归计算多目标状态随机有限集的后验强度,实时得到目标数目及其状态的估计.算法引进最小二乘算法估计出候选目标点进行数据关联,解决了无源观测线较近时无源数据关联精度下降问题.仿真实验验证了该算法的有效性. 展开更多
关键词 无源雷达 随机有限集 概率假设密度 多目标跟踪 数据关联
下载PDF
高斯厄米特粒子PHD被动测角多目标跟踪算法 被引量:9
11
作者 杨金龙 姬红兵 刘进忙 《系统工程与电子技术》 EI CSCD 北大核心 2013年第3期457-462,共6页
针对传统粒子概率假设密度(probability hypothesis density,PHD)滤波跟踪被动多目标时,估计精度不高,且存在粒子退化,容易导致滤波器发散的问题,提出一种新的被动多目标跟踪算法———高斯厄米特粒子PHD滤波算法。该算法采用一族高斯... 针对传统粒子概率假设密度(probability hypothesis density,PHD)滤波跟踪被动多目标时,估计精度不高,且存在粒子退化,容易导致滤波器发散的问题,提出一种新的被动多目标跟踪算法———高斯厄米特粒子PHD滤波算法。该算法采用一族高斯厄米特滤波产生的高斯分布拟合更优的重要性密度函数,充分考虑了当前时刻的最新量测,并将该方法融入高斯混合粒子PHD(Gaussian mixture particle PHD,GMP-PHD)滤波框架中,在解决观测非线性的同时,有效提高了被动多目标的跟踪精度。实验结果表明,该算法较传统的GMP-PHD滤波算法具有更高的状态估计精度,且有效降低了目标的失跟率。 展开更多
关键词 随机有限集 目标跟踪 概率假设密度 高斯厄米特滤波
下载PDF
一种新的未知杂波环境下的PHD滤波器 被引量:9
12
作者 李翠芸 江舟 姬红兵 《西安电子科技大学学报》 EI CAS CSCD 北大核心 2014年第5期18-23,共6页
针对多目标跟踪中概率假设密度(PHD)滤波器在杂波模型与先验知识不匹配情况下滤波性能急剧下降的缺点,将增广状态空间引入PHD滤波器,提出了一种新的未知杂波环境下的PHD滤波器.该滤波器利用增广状态空间区分目标状态空间与杂波状态空间... 针对多目标跟踪中概率假设密度(PHD)滤波器在杂波模型与先验知识不匹配情况下滤波性能急剧下降的缺点,将增广状态空间引入PHD滤波器,提出了一种新的未知杂波环境下的PHD滤波器.该滤波器利用增广状态空间区分目标状态空间与杂波状态空间,通过量测对杂波模型进行估计,不需要杂波先验知识,避免了因杂波强度的先验知识选择不当而造成PHD滤波器跟踪性能下降的问题.仿真结果表明,该算法在未知杂波环境下,具有稳定的跟踪效果;在保证实时性的前提下,其跟踪精度与传统PHD滤波器在杂波模型匹配情况下相当. 展开更多
关键词 多目标跟踪 概率假设密度 未知杂波 增广状态空间
下载PDF
用于多个机动目标的混合高斯概率假设密度跟踪器 被引量:8
13
作者 刘贵喜 周承兴 +1 位作者 王泽毅 廖兴海 《控制理论与应用》 EI CAS CSCD 北大核心 2011年第8期1087-1092,共6页
现有的混合高斯概率假设密度(GM-PHD)跟踪器不仅可以估计时变的多目标状态,还能辨识不同目标并保持其轨迹连续性.但当多个目标发生机动时,其稳定性较差,容易丢失目标.针对这一问题,本文提出一种能跟踪多个机动目标的混合高斯概率假设密... 现有的混合高斯概率假设密度(GM-PHD)跟踪器不仅可以估计时变的多目标状态,还能辨识不同目标并保持其轨迹连续性.但当多个目标发生机动时,其稳定性较差,容易丢失目标.针对这一问题,本文提出一种能跟踪多个机动目标的混合高斯概率假设密度跟踪器算法.算法在GM-PHD滤波的框架上采用修正的输入估计方法将目标的概率假设密度(PHD)表示成混合高斯形式,并利用不同的标记辨识各个高斯分量,然后通过PHD滤波方程迭代这些高斯分量和对应的标记,最终达到跟踪多个机动目标的目的.仿真实验表明,和传统的GM-PHD跟踪器相比,新算法能以更高的稳定性跟踪多个机动目标. 展开更多
关键词 多目标跟踪 随机集 概率假设密度 混合高斯 机动目标
下载PDF
箱粒子PHD演化网络群目标跟踪算法 被引量:8
14
作者 宋骊平 刘宇航 程轩 《控制与决策》 EI CSCD 北大核心 2018年第1期74-80,共7页
群演化网络模型对群结构的构建和实时更新提供了良好的实现方式.针对粒子概率假设密度(SMCPHD)滤波算法存在运算量大的问题,提出一种基于箱粒子概率假设密度(BP-PHD)滤波的演化网络群目标跟踪算法.将群演化网络模型得到的群结构信息反馈... 群演化网络模型对群结构的构建和实时更新提供了良好的实现方式.针对粒子概率假设密度(SMCPHD)滤波算法存在运算量大的问题,提出一种基于箱粒子概率假设密度(BP-PHD)滤波的演化网络群目标跟踪算法.将群演化网络模型得到的群结构信息反馈回BP-PHD滤波过程中,从而实现群目标的跟踪和群数目的估计.对比实验表明,所提出算法可以在保证跟踪效果的同时减少计算量,并且在杂波密集的条件下具有更好的跟踪精度和鲁棒性. 展开更多
关键词 演化网络模型 群目标跟踪 箱粒子滤波 概率假设密度
原文传递
高斯粒子PHD滤波的多个弱小目标TBD算法 被引量:8
15
作者 李翠芸 曹潇男 +1 位作者 廖良雄 江舟 《系统工程与电子技术》 EI CSCD 北大核心 2015年第4期740-745,共6页
针对现有多个弱小目标检测前跟踪(track-before-detect,TBD)算法存在的跟踪精度低,算法复杂度高等问题,提出一种新的基于概率假设密度(probability hypothesis density,PHD)的TBD算法。所提算法通过高斯粒子滤波对PHD中的各高斯项进行... 针对现有多个弱小目标检测前跟踪(track-before-detect,TBD)算法存在的跟踪精度低,算法复杂度高等问题,提出一种新的基于概率假设密度(probability hypothesis density,PHD)的TBD算法。所提算法通过高斯粒子滤波对PHD中的各高斯项进行递归运算、进行多帧能量累积,并提取高斯项的均值为目标的状态,达到检测与跟踪多个弱小目标的目的。算法在随机集滤波框架下完成未知数目的多个弱小目标跟踪,不仅充分利用粒子滤波的非线性估计能力,同时避免了传统算法利用模糊聚类进行目标状态提取所带来的跟踪精度低等问题。仿真结果表明,所提算法与传统方法相比,在降低算法复杂度的同时,对多个红外弱小目标具有更加良好的实时检测和跟踪性能。 展开更多
关键词 检测前跟踪 概率假设密度 高斯粒子滤波 红外图像 多目标跟踪
下载PDF
多目标滤波中的多传感器概率假设密度算法 被引量:7
16
作者 杨可 傅忠谦 +1 位作者 王剑亭 林日钊 《电子与信息学报》 EI CSCD 北大核心 2012年第6期1368-1373,共6页
多传感器情况下的多目标概率假设密度(PHD)滤波是建立在假设模型上实现的。该文用随机有限集(RFS)方法描述多目标状态空间和传感器量测空间,分析了多传感器通用假设模型下的探测概率、似然函数和杂波分布,在此基础上利用概率产生泛函(PG... 多传感器情况下的多目标概率假设密度(PHD)滤波是建立在假设模型上实现的。该文用随机有限集(RFS)方法描述多目标状态空间和传感器量测空间,分析了多传感器通用假设模型下的探测概率、似然函数和杂波分布,在此基础上利用概率产生泛函(PGFL)推导出了多传感器PHD滤波递归式,进而提出粒子标记法多传感器贯序蒙特卡洛PHD(SMC-PHD)滤波等价实现算法,降低了多传感器PHD滤波的计算复杂度。最后给出了算法的具体实现,得到了良好的多目标数目和可跟踪多目标状态的估计。 展开更多
关键词 多传感器滤波 概率假设密度 概率产生泛函 假设模型 粒子标记法
下载PDF
基于随机有限集的多目标跟踪技术综述
17
作者 严灵杰 顾杰 +4 位作者 姜余 徐敏 高昭昭 田保立 张铁男 《电子信息对抗技术》 2024年第1期81-88,共8页
随机有限集理论为多目标跟踪、多传感器融合和态势评估等问题提供了完整、统一的理论框架和解决方案。基于随机有限集的跟踪算法将多目标状态和量测建模为随机有限集,自然地引入航迹起始、终结机制,可实现目标数量和状态的同时估计。通... 随机有限集理论为多目标跟踪、多传感器融合和态势评估等问题提供了完整、统一的理论框架和解决方案。基于随机有限集的跟踪算法将多目标状态和量测建模为随机有限集,自然地引入航迹起始、终结机制,可实现目标数量和状态的同时估计。通过对随机有限集框架下的概率假设密度、带势概率假设密度、多目标多伯努利滤波器、扩展标签随机集滤波器和泊松多伯努利混合滤波器的研究进展进行详细梳理和综合对比,对基于随机有限集的多目标跟踪领域未来发展方向进行了分析和展望。 展开更多
关键词 多目标跟踪 多传感器融合 随机有限集 概率假设密度 带势概率假设密度
下载PDF
基于高斯混合势化概率假设密度的脉冲多普勒雷达多目标跟踪算法 被引量:6
18
作者 吴卫华 江晶 +1 位作者 冯讯 刘重阳 《电子与信息学报》 EI CSCD 北大核心 2015年第6期1490-1494,共5页
为在新兴的随机有限集(RFS)框架下充分利用多普勒信息跟踪杂波环境下的多目标,该文提出基于高斯混合势化概率假设密度(GM-CPHD)的脉冲多普勒雷达多目标跟踪(MTT)算法。该算法在标准GM-CPHD基础上,在使用位置量测更新状态后,再利用多普... 为在新兴的随机有限集(RFS)框架下充分利用多普勒信息跟踪杂波环境下的多目标,该文提出基于高斯混合势化概率假设密度(GM-CPHD)的脉冲多普勒雷达多目标跟踪(MTT)算法。该算法在标准GM-CPHD基础上,在使用位置量测更新状态后,再利用多普勒量测进行序贯更新,可获得更精确的似然函数和状态估计。仿真结果验证了该算法的有效性,表明在GM-CPHD基础上引入目标的多普勒信息可有效抑制杂波,显著改善跟踪性能。 展开更多
关键词 多目标跟踪 随机有限集 概率假设密度 高斯混合势化概率假设密度 脉冲多普勒雷达
下载PDF
基于随机有限集的多目标跟踪算法综述 被引量:7
19
作者 吴卫华 江晶 +2 位作者 冯讯 刘重阳 秦星 《电光与控制》 北大核心 2016年第3期1-6,共6页
基于随机有限集(RFS)的多目标跟踪算法是近年来国际上多传感器信息融合领域的研究热点。分别论述了RFS框架下3种重要的近似滤波器即概率假设密度(PHD)、势化PHD(CPHD)和多目标多伯努利(Me MBer)滤波器的研究进展,并对它们进行了比较和总... 基于随机有限集(RFS)的多目标跟踪算法是近年来国际上多传感器信息融合领域的研究热点。分别论述了RFS框架下3种重要的近似滤波器即概率假设密度(PHD)、势化PHD(CPHD)和多目标多伯努利(Me MBer)滤波器的研究进展,并对它们进行了比较和总结;然后,着重梳理了它们在机动目标跟踪、非标准目标跟踪、多传感器融合、多目标跟踪性能评估等方面的研究现状;最后,对相关领域的未来研究方向进行了分析和展望。 展开更多
关键词 多传感器融合 多目标跟踪 随机有限集 概率假设密度 多目标多伯努利滤波器
下载PDF
改进的MMPHD机动目标跟踪方法 被引量:7
20
作者 罗少华 徐晖 +1 位作者 徐洋 安玮 《航空学报》 EI CAS CSCD 北大核心 2012年第7期1296-1304,共9页
基于序列蒙特卡罗方法的经典多模概率假设密度滤波方法及其各种衍生方法,在预测过程中依据多个并行的状态转移模型,通过将大量粒子散布到下一时刻目标所有可能出现的状态空间实现目标状态的捕获,造成计算量大、目标跟踪精度差。为此,提... 基于序列蒙特卡罗方法的经典多模概率假设密度滤波方法及其各种衍生方法,在预测过程中依据多个并行的状态转移模型,通过将大量粒子散布到下一时刻目标所有可能出现的状态空间实现目标状态的捕获,造成计算量大、目标跟踪精度差。为此,提出一种改进的多模粒子概率假设密度机动目标跟踪方法。该方法利用最新量测信息估计目标运动模型概率及模型参数,并将估计得到的目标模型应用到粒子概率假设密度滤波方法的预测过程中生成预测粒子,从而将大部分粒子聚合在目标最可能出现的状态空间邻域中,实现粒子的有效利用。数值仿真表明,所提方法不仅显著地减少了目标丢失个数,而且提高了目标跟踪精度。 展开更多
关键词 跟踪 概率假设密度 粒子滤波 随机有限集 交互多模
原文传递
上一页 1 2 20 下一页 到第
使用帮助 返回顶部