期刊导航
期刊开放获取
cqvip
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于CNN-LSTM-lightGBM组合的超短期风电功率预测方法
被引量:
14
1
作者
王愈轩
刘尔佳
黄永章
《科学技术与工程》
北大核心
2022年第36期16067-16074,共8页
近年来,风电装机规模逐年增加,风电数据采集量呈现规模化增长,面对海量多维、强波动的风电数据,风电功率预测精度仍面临一定的挑战。为提高风电功率预测精度,提出了基于卷积神经网络(convolutional neural networks,CNN)-长短期记忆网络...
近年来,风电装机规模逐年增加,风电数据采集量呈现规模化增长,面对海量多维、强波动的风电数据,风电功率预测精度仍面临一定的挑战。为提高风电功率预测精度,提出了基于卷积神经网络(convolutional neural networks,CNN)-长短期记忆网络(long short-term memory,LSTM)和梯度提升学习(light gradient boosting machine,lightGBM)组合的超短期风电功率预测方法。首先,分别建立CNN-LSTM和lightGBM的风电功率超短期预测模型。其中,CNN-LSTM模型采用CNN对风电数据集进行特征处理,并将其作为LSTM模型的数据输入,从而建立CNN-LSTM融合的预测模型;然后,采用误差倒数法对CNN-LSTM和lightGBM的预测数据进行加权组合,建立CNN-LSTM-lightGBM组合的预测模型;最后,采用张北曹碾沟风电场的风电数据集,以未来4 h风电功率为预测目标,验证了组合模型的有效性。预测结果表明:相较于其他3种单一模型,组合模型具有更高的预测精度。
展开更多
关键词
卷积神经网络(CNN)
长短期记忆网络(LSTM)
梯度
提升
学习
(
lightgbm
)
组合模型
风电功率预测
下载PDF
职称材料
题名
基于CNN-LSTM-lightGBM组合的超短期风电功率预测方法
被引量:
14
1
作者
王愈轩
刘尔佳
黄永章
机构
华北电力大学电气与电子工程学院
国网湖北省武汉电力公司信息通信分公司
出处
《科学技术与工程》
北大核心
2022年第36期16067-16074,共8页
基金
中央高校基本科研业务费专项基金(2019QN117)
国家电网公司科技项目(SGJSDK00JLXT7118041)。
文摘
近年来,风电装机规模逐年增加,风电数据采集量呈现规模化增长,面对海量多维、强波动的风电数据,风电功率预测精度仍面临一定的挑战。为提高风电功率预测精度,提出了基于卷积神经网络(convolutional neural networks,CNN)-长短期记忆网络(long short-term memory,LSTM)和梯度提升学习(light gradient boosting machine,lightGBM)组合的超短期风电功率预测方法。首先,分别建立CNN-LSTM和lightGBM的风电功率超短期预测模型。其中,CNN-LSTM模型采用CNN对风电数据集进行特征处理,并将其作为LSTM模型的数据输入,从而建立CNN-LSTM融合的预测模型;然后,采用误差倒数法对CNN-LSTM和lightGBM的预测数据进行加权组合,建立CNN-LSTM-lightGBM组合的预测模型;最后,采用张北曹碾沟风电场的风电数据集,以未来4 h风电功率为预测目标,验证了组合模型的有效性。预测结果表明:相较于其他3种单一模型,组合模型具有更高的预测精度。
关键词
卷积神经网络(CNN)
长短期记忆网络(LSTM)
梯度
提升
学习
(
lightgbm
)
组合模型
风电功率预测
Keywords
convolutional neural networks(CNN)
long short-term memory(LSTM)
light gradient boosting machine(
lightgbm
)
combination model
wind power forecasting
分类号
TM614 [电气工程—电力系统及自动化]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于CNN-LSTM-lightGBM组合的超短期风电功率预测方法
王愈轩
刘尔佳
黄永章
《科学技术与工程》
北大核心
2022
14
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部