期刊文献+

基于CNN-LSTM-lightGBM组合的超短期风电功率预测方法 被引量:12

An Ultra-short-term Wind Power Prediction Method Based on CNN-LSTM-lightGBM Combination
下载PDF
导出
摘要 近年来,风电装机规模逐年增加,风电数据采集量呈现规模化增长,面对海量多维、强波动的风电数据,风电功率预测精度仍面临一定的挑战。为提高风电功率预测精度,提出了基于卷积神经网络(convolutional neural networks,CNN)-长短期记忆网络(long short-term memory,LSTM)和梯度提升学习(light gradient boosting machine,lightGBM)组合的超短期风电功率预测方法。首先,分别建立CNN-LSTM和lightGBM的风电功率超短期预测模型。其中,CNN-LSTM模型采用CNN对风电数据集进行特征处理,并将其作为LSTM模型的数据输入,从而建立CNN-LSTM融合的预测模型;然后,采用误差倒数法对CNN-LSTM和lightGBM的预测数据进行加权组合,建立CNN-LSTM-lightGBM组合的预测模型;最后,采用张北曹碾沟风电场的风电数据集,以未来4 h风电功率为预测目标,验证了组合模型的有效性。预测结果表明:相较于其他3种单一模型,组合模型具有更高的预测精度。 In recent years,the installed scale of wind power has increased year by year,and the amount of wind power data collection has shown a large-scale growth.Facing the massive multidimensional and strongly fluctuating wind power data,the accuracy of wind power prediction still faces certain challenges.To improve the accuracy of wind power prediction,an ultra-short-term wind power prediction method based on the combination of convolutional neural networks(CNN)-long short-term memory(LSTM)and light gradient boosting machine(lightGBM)was proposed.Firstly,the ultra-short-term wind power prediction models of CNN-LSTM and lightGBM were established respectively.Among them,the CNN-LSTM model used CNN to feature the wind power dataset and used it as the data input of the LSTM model,so as to established the prediction model of CNN-LSTM fusion.Then,the error inverse method was used to combine the prediction data of CNN-LSTM and lightGBM in a weighted way to establish the combined CNN-LSTM-lightGBM prediction model.Finally,the wind power dataset of a wind farm in Zhangbei was used to verify the effectiveness of the combined model with the future 4 h wind power as the prediction target.The prediction results show that the combined model has higher prediction accuracy compared with other three single models.
作者 王愈轩 刘尔佳 黄永章 WANG Yu-xuan;LIU Er-jia;HUANG Yong-zhang(School of Electrical and Electronic Engineering,North China Electric Power University,Beijing 102206,China;Information and Communication Branch of State Grid Hubei Wuhan Electric Power Company,Wuhan 430000,China)
出处 《科学技术与工程》 北大核心 2022年第36期16067-16074,共8页 Science Technology and Engineering
基金 中央高校基本科研业务费专项基金(2019QN117) 国家电网公司科技项目(SGJSDK00JLXT7118041)。
关键词 卷积神经网络(CNN) 长短期记忆网络(LSTM) 梯度提升学习(lightGBM) 组合模型 风电功率预测 convolutional neural networks(CNN) long short-term memory(LSTM) light gradient boosting machine(lightGBM) combination model wind power forecasting
  • 相关文献

参考文献20

二级参考文献244

共引文献665

同被引文献163

引证文献12

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部