讨论了核主元分析(K erne l P rinc ipa l Com ponen t A na lys is,简称KPCA)原理,提出了基于KPCA的透平机械状态监测方法。该方法在低维特征空间利用内积核函数,实现原始空间到高维空间的非线性映射以及对高维映像数据的主元分析,从...讨论了核主元分析(K erne l P rinc ipa l Com ponen t A na lys is,简称KPCA)原理,提出了基于KPCA的透平机械状态监测方法。该方法在低维特征空间利用内积核函数,实现原始空间到高维空间的非线性映射以及对高维映像数据的主元分析,从而在低维空间得到原始特征的非线性主元,并根据非线性主元构建特征子空间,实现特征提取和对透平机械状态的分类识别并监测其状态变化。对仿真数据及透平机械在正常、重负荷状态下试验数据的研究表明,KPCA分类效果比主元分析好,能有效地识别出透平机械的不同状态,并能及时监测到状态发生的变化。展开更多
针对烟气轮机振动信号的非线性、非平稳特性,提出了一种核函数主元分析(KPCA,Kernel Principal Component Analysis)和多层递阶(MLR,Multi-Level Recursive)预测模型相结合的烟气轮机非线性故障预测方法。首先,采用非线性数据模型KPCA...针对烟气轮机振动信号的非线性、非平稳特性,提出了一种核函数主元分析(KPCA,Kernel Principal Component Analysis)和多层递阶(MLR,Multi-Level Recursive)预测模型相结合的烟气轮机非线性故障预测方法。首先,采用非线性数据模型KPCA对烟气轮机运行状态进行故障检测;然后,采用非线性预测模型MLR分别对故障检测指标T2和SPE统计值进行趋势预测。仿真结果表明,KPCA完全适合于烟气轮机的故障检测,具有处理非线性、非平稳数据的能力,并且MLR模型预测精度较高。展开更多
核函数主元分析KPCA(kernel princ ipal component analysis)能够提取机械故障信号的非线性特征,可以应用于机械故障状态识别。但是KPCA是一种无监督的特征提取方法,不能利用故障信号中的类别信息。本文介绍了一种核最优K-L变换,它可以...核函数主元分析KPCA(kernel princ ipal component analysis)能够提取机械故障信号的非线性特征,可以应用于机械故障状态识别。但是KPCA是一种无监督的特征提取方法,不能利用故障信号中的类别信息。本文介绍了一种核最优K-L变换,它可以充分利用类别信息,它能够提取类平均向量和方差向量中的判别信息,使提取的特征分类效果更好。在齿轮故障诊断实验中,采用核最优K-L变换提取故障信号的非线性特征,实验结果表明核最优K-L变换相比KPCA故障识别结果更为理想。展开更多
文摘讨论了核主元分析(K erne l P rinc ipa l Com ponen t A na lys is,简称KPCA)原理,提出了基于KPCA的透平机械状态监测方法。该方法在低维特征空间利用内积核函数,实现原始空间到高维空间的非线性映射以及对高维映像数据的主元分析,从而在低维空间得到原始特征的非线性主元,并根据非线性主元构建特征子空间,实现特征提取和对透平机械状态的分类识别并监测其状态变化。对仿真数据及透平机械在正常、重负荷状态下试验数据的研究表明,KPCA分类效果比主元分析好,能有效地识别出透平机械的不同状态,并能及时监测到状态发生的变化。
文摘针对烟气轮机振动信号的非线性、非平稳特性,提出了一种核函数主元分析(KPCA,Kernel Principal Component Analysis)和多层递阶(MLR,Multi-Level Recursive)预测模型相结合的烟气轮机非线性故障预测方法。首先,采用非线性数据模型KPCA对烟气轮机运行状态进行故障检测;然后,采用非线性预测模型MLR分别对故障检测指标T2和SPE统计值进行趋势预测。仿真结果表明,KPCA完全适合于烟气轮机的故障检测,具有处理非线性、非平稳数据的能力,并且MLR模型预测精度较高。
文摘核函数主元分析KPCA(kernel princ ipal component analysis)能够提取机械故障信号的非线性特征,可以应用于机械故障状态识别。但是KPCA是一种无监督的特征提取方法,不能利用故障信号中的类别信息。本文介绍了一种核最优K-L变换,它可以充分利用类别信息,它能够提取类平均向量和方差向量中的判别信息,使提取的特征分类效果更好。在齿轮故障诊断实验中,采用核最优K-L变换提取故障信号的非线性特征,实验结果表明核最优K-L变换相比KPCA故障识别结果更为理想。